浅析当代新媒体艺术的溯源与发展

来源 :明日风尚 | 被引量 : 0次 | 上传用户:tvxq905
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新媒体艺术是新技术形势下的一种,当代繁多艺术中的全新艺术创作新主流,其自身作为一种诞生于现代计算机应用技术中的特殊艺术类型,不仅在很大意义上以及程度上颠覆式推翻现有的艺术创作传统美学体系,还在某种欣赏美以及创造美的价值引导上大幅改变人们对传统艺术诞生的审美认知。新媒体艺术的诞生科学推动当代各个艺术与其他创作创新领域的交流与建设发展,并渗透到日常工作休闲以及娱乐的方方面面,为当代艺术走进普罗大众视野打好一定的基础。基于此,文章中笔者针对当前时代背景下新媒体艺术的溯源和发展进行分析和论述,以期提供一定理论指导和参考。
其他文献
为提升卷积神经网络用于阿尔兹海默症MRI图像分类的效果,提出一种融合自适应注意力机制和数据增强技术的卷积神经网络FAMENET。通过引入数据增强技术和Focal Loss损失函数缓解数据不平衡现象;重构优化主干网络EfficientNet,在保持精度的情况下减少模型参数量和网络的计算量;引入自适应注意力机制,解决输入图片进行特征提取下采样过程导致的信息丢失问题。在公开数据集进行大量对比实验,FAM
期刊
报纸
<正> (一)关于第四纪哺乳动物体型增大的问题,早已引起了古生物学家的注意,特别是对于欧洲的第四纪哺乳动物。欧洲在第四纪的时候,曾有大陆冰川出现,气候寒冷,于是一些古生物学家根据博格曼的定律(Bergmann’s Law),而解释第四纪哺乳动物的体型增大,是
期刊
针对传统卷积神经网络模型复杂度高、参数量大,网络分类的精度和效率不佳等问题,提出一种应用于医学超声图像中肝硬化识别的深度学习方法(E-EfficientNet)。在EfficientNet网络模型中,将模块MBConv中的注意力机制SENet模块替换为一种不降维的ECANet模块,避免降维操作导致的特征信息缺失,增强通道学习能力并降低模型复杂度;将可变形卷积融入EfficientNet网络,利用可
期刊
为提高临床上对肺炎X射线图像诊断的效率及准确率,本研究基于EfficientNet网络模型,融合卷积注意力模块(convolutional block attention module, CBAM)提出了一种识别肺炎和正常图像的分类算法。首先,对数据进行增强以防止过拟合现象;其次,通过CBAM模块提升网络对肺炎病灶区的特征提取能力;最后,使用迁移学习加速网络训练,以提升分类性能。结果表明,该算法分
期刊
目的 提出一种基于深度网络特征融合的分类方法,以提高良恶性分类的准确率,辅助医生提高术前诊断卵巢包块良恶性的准确率。方法 纳入深圳市人民医院943幅经活检、手术病理等证实的患者术前卵巢超声图像,按照6∶2∶2的比例随机设置训练集、验证集和测试集。首先,提取医生勾画的感兴趣区域(region of interest,ROI)即包块图,用微调后的EfficientNet网络提取其深度特征;然后用基于C
期刊
目的 :为实现对超声图像乳腺肿瘤准确、高效地分割,提出一种融合EfficientNet和U-Net的分割方法。方法:首先将U-Net的编码器替换成EfficientNet B4中的特征提取网络,然后引入Dice损失函数和边界损失函数,再以一定权重与交叉熵损失函数组合后得到复合损失函数,最后将EfficientNet B4在数据集ImageNet上的训练权重作为预训练权重,在公开数据集Dataset
期刊
报纸
报纸
报纸