论文部分内容阅读
根据红外灰度图像的特点,提出了一种基于K-均值聚类的图像增强的新算法。该算法首先根据具体图像确定K值,其次对红外图像的辐射温度数据进行统计学习,把不同温度值按升序排列,然后按等差原则选取温度值作为初始聚类中心,再依据初始聚类中心采用K-均值聚类算法对温度进行聚类,最后由聚类结果对图像进行自适应增强。通过对红外灰度图像进行实验,得到了满意的结果:对比直方图均衡,具有更丰富的图像细节信息和层次感,视觉效果更好。