论文部分内容阅读
针对雨天环境下监控视频因雨水噪声、图像的灰度值削弱使行人轮廓特征丢失而出现的目标行人漏检误检情况,建立了一种基于HOG-SIFT特征稀疏表示的行人检测算法。通过直方图均衡化降低雨水噪声;提取图像HOG-SIFT融合特征表征视频图像中的行人信息,减少轮廓特征的丢失;利用稀疏表示降低融合特征的维数,减小计算量并保留有效的行人特征,结合Ada Boost分类器降低漏检率和误检率。实验结果表明,该算法在雨天环境下有效地提高了行人检测的准确率。