论文部分内容阅读
生成式对抗网络(Generative adversarial networks, GAN)是主要的以无监督方式学习深度生成模型的方法之一.基于可微生成器网络的生成式建模方法,是目前最热门的研究领域,但由于真实样本分布的复杂性,导致GAN生成模型在训练过程稳定性、生成质量等方面均存在不少问题.在生成式建模领域,对网络结构的探索是重要的一个研究方向,本文利用胶囊神经网络(Capsule networks, CapsNets)重构生成对抗网络模型结构,在训练过程中使用了Wasserstein GAN(WG