论文部分内容阅读
The structural,electronic and magnetic properties of CrN under high pressure are investigated by first-principles calculations.The antiferromagnetic orthorhombic structure is identified to be the preferred ground state structure.It possesses a bulk modulus of 252.8 GPa and the nonzero magnetic moment of 2.33 μ B per Cr ion,which agree well with the experimental results.CrN undergoes structural and magnetic transitions from an antiferromagnetic rocksalt structure to a non-magnetic Pnma phase at 132 GPa.Under...","The structural,electronic and magnetic properties of CrN under high pressure are investigated by first-principles calculations.The antiferromagnetic orthorhombic structure is identified to be the preferred ground state structure.It possesses a bulk modulus of 252.8 GPa and the nonzero magnetic moment of 2.33 μB per Cr ion,which agree well with the experimental results.CrN undergoes structural and magnetic transitions from an antiferromagnetic rocksalt structure to a non-magnetic Pnma phase at 132 GPa.Under compression,the magnetic moment of the Cr ion reduces rapidly near the equilibrium and phase transition point,and the distribution of the density of states is broadened,but the form of overlap between the orbitals of Cr d and N p remains unchanged.The broadening of the band induces spin flipping,which consequently results in the smaller magnetic moment of the Cr ion.