论文部分内容阅读
微博具有数量多、字数少、话题广泛等特点,导致数据中孤立点较多,对微博热点话题聚类算法产生不利影响,为此,提出一种消除孤立点的微博热点话题发现方法。首先消除数据集中的孤立点,然后采用CURE(Clustering Using Representatives)算法对剩余有聚类价值的数据进行聚类,最后通过实例验证算法的有效性。结果表明,相对于对比聚类算法,该算法降低聚类结果对孤立点的敏感度,提高了微博热点话题发现的准确性,并提高了算法的运行效率,更适合应用于大规模的微博热点话题发现。