论文部分内容阅读
高光谱图像包含了大量的光谱信息和图像信息,采用高光谱成像技术对牛肉品种进行识别。获取可见-近红外(400~1 000 nm)光谱范围内的安格斯牛、利木赞牛、秦川牛、西门塔尔牛、荷斯坦奶牛五个品种共252个牛肉样本的高光谱图像。在ENVI软件中对高光谱图像进行阈值分割并构建掩膜图像,获取样本的感兴趣区域(ROI),并结合伪彩色图对牛肉样本的反射率指数进行可视化表达;采用Kennard-Stone(KS)法对样本集进行划分以提高模型的预测性能;对原始光谱采用卷积平滑(SG)、区域归一化(Area nor