论文部分内容阅读
针对AdaBoost算法在训练样本和特征较多时训练时间过长的问题,提出了一种改进的AdaBoot算法与支持向量机组合的分类器.对多重分类器的输出结果以非线性的方式组合,采用交替的方式轮流对不同的特征进行学习,将多重分类器处理完后的结果作为另一种输入样本,再以一个分类器做一次分类.实验表明该算法用于行人检测可行、性能稳定.