基于自然邻的自适应谱聚类算法

来源 :计算机技术与发展 | 被引量 : 0次 | 上传用户:love56789
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在传统谱聚类算法中,构造相似矩阵时需要人为输入尺度参数;除此之外,之后的k-means过程中还需要人工输入确切的聚类数目,而以上两个参数对聚类效果影响巨大。针对以上问题,提出了一种基于自然邻的自适应谱聚类算法。该算法不需要人为输入任何参数,完全实现自适应,主要方式是通过自然邻算法获取各点之间的邻近信息,其中包括自然邻个数、自然逆邻个数、自然邻居集以及自然逆邻居集。通过实例分析,在多重尺度数据集下或者在流行数据集中,充分利用以上先验信息构造出更加符合实际情况的相似矩阵。另外,根据近邻传播思想获得聚类数目。将
其他文献
社区检测是社交网络中常用的分析手段,目的是发现网络中联系较为紧密的节点集群,提取集群,从而进一步探索集群隐含的信息.现实中的社交网络随时间不断增大,传统的社区检测算