论文部分内容阅读
Tensile and fatigue properties of free-standing as-rolled Cu foils were investigated by means of uniaxial tensile and dynamic bending tests. A special testing system was established to evaluate fatigue behavior of a mi-croscale material subjected to dynamic bending load. The experimental results show that the yield strength increases, but the fracture strain and fatigue resistance decrease with decreasing foil thickness. Deformation and fatigue damage behavior was characterized. The size effect on tensile and fatigue properties of the Cu foils are evaluated to get further understanding of the mechanical behavior of the micrometer-scale metallic materials.
Tensile and fatigue properties of free-standing as-rolled Cu foils were investigated by means of uniaxial tensile and dynamic bending tests. A special testing system was established to evaluate fatigue behavior of a mi-croscale material subjected to dynamic bending load. show that the yield strength increases, but the fracture strain and fatigue resistance decrease with decreasing foil thickness. Deformation and fatigue damage behavior was characterized. The size effect on tensile and fatigue properties of the Cu foils are evaluated to get even further understanding of the mechanical behavior of the micrometer-scale metallic materials.