论文部分内容阅读
高光谱遥感数据越来越普及并为人们广泛使用,基于高光谱数据的地面物体精确分类是高光谱遥感技术的核心应用之一。随着深度学习的发展,卷积神经网络在图像分类上表现效果优异。针对高光谱图像光谱维度高、特征丰富的特点,应用添加多尺度滤波器的深度卷积网络进行图像的像元精细分类。实验证明,结合多尺度滤波器的深度卷积网络模型可以得到更好的分类效果。