,Multiplicity-Free Gradings on Semisimple Lie and Jordan Algebras and Skew Root Systems

来源 :代数集刊(英文版) | 被引量 : 0次 | 上传用户:xuyingheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A G-grading on an algebra,where G is an abelian group,is called multiplicity-free if each homogeneous component of the grading is 1-dimensional.We introduce skew root systems of Lie type and skew root systems of Jordan type,and use them to construct multiplicity-free gradings on semisimple Lie algebras and on semisimple Jordan algebras respectively.Under certain conditions the corresponding Lie (resp.,Jordan) algebras are simple.Two families of skew root systems of Lie type (resp.,of Jordan type) are constructed and the corresponding Lie (resp.,Jordan) algebras are identified.This is a new approach to study abelian group gradings on Lie and Jordan algebras.
其他文献
We study a family of "symmetric" multiparameter quantized Weyl algebras A(q)∧n(K) and some related algebras.We compute the Nakayama automorphism of A(q),∧n(K)
In this paper,rational extensions of affine vertex operator algebras Lsl3 (k,0) with k ∈ Z+ are classified by modular invariants.
We obtain alteative explicit Specht filtrations for the induced and the restricted Specht modules in the Hecke algebra of the symmetric group (defined over the
随着新闻改革的深入,一种“最自由的文字”——随笔,开始受到越来越多的报纸的重视,引起越来越多读者的兴趣。综览近年不少报纸的署名言论,大都有意无意地朝着“随笔味”发
In this article,we define the nil clean graph of a ring R.The vertex set is the ring R,and two ring elements a and b are adjacent if and only if a + b is nil cl
各类舞台艺术表演的一个重要基础就是舞美设计。目前在我国市场化进程中,各艺术团体正处于一个关键时期,为了更好地适应市场化改革,必须使舞美设计的艺术性和现代化水平得到