论文部分内容阅读
心血管疾病是当今人类死亡的主要原因之一。本文基于改进的残差网络对心电信号进行识别,并将改进后的残差网络和空洞卷积进行结合,特征提取时保持局部信息不变的同时尽可能地提取全局信息。研究使用K折交叉验证对MIT⁃BIH心律失常数据集进行训练、验证和测试。首先使用卷积层汇集输入图像,其次利用改进后的网络进行特征提取,最后使用Softmax分类器进行分类。在MIT⁃BIH心律不齐数据库中,提出的模型在没有任何额外人工特征和数据增强进行辅助的情况下,获得了97.20%的准确度、92.85%的敏感度、98.29%的特异