论文部分内容阅读
提出了超长方体与KNN相结合的分类算法.在训练阶段,该算法为训练集中的每一个类别构造多个超长方体,区域分离每一类训练样本.在测试阶段,该算法首先检查测试样本是否被某一个超长方体包围,如是则其类别被识别出,否则用KNN方法确定其类别.实验采用四个真实数据集进行测试.实验结果表明基于超长方体与KNN的分类算法在四个数据集全部优于两个基于多球覆盖的分类方法,是一种有效的分类方法.