论文部分内容阅读
针对miRNA-疾病关联研究中信息使用不充分、过于依赖网络中节点的相似度信息以及预测准确度较低的问题,提出一种基于网络表示学习的miRNA-疾病关联预测方法(network representation learning miRNAdisease association,NRLMDA)。该方法通过引入长链非编码RNA(lncRNA)构造出miRNA-lncRNA-疾病异构网络,丰富原有网络的生物学信息;采用网络表征学习node2vec算法在上述提出的异构网络中以一定的游走策略获得节点的近邻序列,并通