论文部分内容阅读
随着非线性负荷的大量使用,电能质量问题已日益受到关注.对各种电能质量扰动进行分类,是采取适当措施降低扰动带来影响的前提.小波包是在小波变换的基础上发展起来的,能够提供更为丰富的时频信息.为此,对电能质量扰动信号进行小波包分解,分别以小波包分解终结点的能量和熵作为特征向量,用贝叶斯分类器进行分类识别,对扰动分类做出了仿真分析,仿真结果验证了该方法的有效性.通过与Fisher分段线性分类器进行比较.表明以熵为特征向量的贝叶斯分类方法有较高的识别正确率.