Novel Approach to Minimize the Memory Requirements of Frequent Subgraph Mining Techniques

来源 :电子学报(英文) | 被引量 : 0次 | 上传用户:iceberg4ever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Frequent subgraph mining (FSM) is a subset of the graph mining domain that is extensively used for graph classification and clustering. Over the past decade, many efficient FSM algorithms have been devel-oped with improvements generally focused on reducing the time complexity by changing the algorithm structure or using parallel programming techniques. FSM algorithms also require high memory consumption, which is another problem that should be solved. In this paper, we propose a new approach called Predictive dynamic sized structure packing (PDSSP) to minimize the memory needs of FSM algorithms. Our approach redesigns the internal data structures of FSM algorithms without making algorithmic modifications. PDSSP offers two contributions. The first is the Dynamic Sized Integer Type, a newly designed unsigned integer data type, and the second is a data structure packing technique to change the behavior of the compiler. We examined the effectiveness and efficiency of the PDSSP approach by experimentally embedding it into two state-of-the-art algorithms, gSpan and Gaston. We compared our implementations to the performance of the originals. Nearly all results show that our proposed implementation consumes less memory at each support level, suggesting that PDSSP extensions could save memory, with peak memory usage decreasing up to 38%depending on the dataset.
其他文献
摘要:随着我国的教育机制在不断的改革,作为课改中重要的部分,小学语文也发生一些变化。因为阅读处于小学语文当中重要的地位,所以对阅读教育水平的提高,可以很大程度上提高对学生们的语文教育水平。而在语文教育中,怎样提高小学的阅读教育水平,是当前在小学语文教育中急需解决的问题。而本文主要对我国小学语文教育的现状以及突出问题进行分析,并提出了有关小学语文阅读教育的一些方法和策略,并希望能够为我国的小学语文教
为研究可由废热驱动的喷射制冷-转轮除湿空调系统在船舶上应用的节能特性,结合实船空调的设计参数,在不同的引射系数条件下计算并分析系统的蒸汽耗量、功耗和COP等性能参数的