单词统计特性在情感词自动抽取和商品评论分类中的作用

来源 :计算机应用研究 | 被引量 : 4次 | 上传用户:WUTEK2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单词的统计特征在自然语言处理中具有广泛应用。针对统计特征对关键词抽取和文本分类精确度的影响,分析了八种常见的统计特征,通过情感词抽取和商品评论分类,研究统计特征在情感分析领域中的作用。利用八种统计特征构造文本向量空间模型,替代基于单词构造文本向量空间模型的方法,能够降低文本向量的维度,具有隐形语义空间(LSA/SVD)的压缩效果,在保证分类结果准确率的前提下有效降低了算法的复杂度,能够替代传统的向量空间模型。情感词提取实验的结果表明,通过结合统计特征与词性,情感词提取的准确率能够达到76. 4%,显
其他文献