论文部分内容阅读
软件错误报告的自动分类能够节省大量人力和时间,然而用户提交的错误报告主观性较强,对错误报告的描述较随意,造成自动分类的效率低下。为此,基于传统的词频-逆向文件频率( TF-IDF )算法,结合文档内词条频度与词条在同类别及不同类别文档中的分布情况,提出2种特征降维的改进算法,降维后再对词条进行权值处理,进一步提高特征降维的效果。实验结果表明,应用该算法得到的错误报告自动分类在精确率、召回率、F1值和准确度等指标上比现有算法都有明显提高。