论文部分内容阅读
视觉目标跟踪过程中出现的目标尺度和方向变化问题一直是目标跟踪中的难点,如何有效处理目标尺度方向变化是保证目标跟踪算法鲁棒性的一项重要因素。介绍了视频目标跟踪发展状况,并对现有的目标尺度和方向跟踪算法进行了分类:增量式搜索、Meanshift迭代、角点匹配、区域二阶矩、粒子滤波、相关滤波器和深度学习跟踪算法。阐述了各种算法的基本思想及其尺度和方向处理方法,重点分析了利用深度学习技术处理目标尺度和方向变化的策略,分析了各种算法的优缺点,并指出了它们的适用场合。对目标尺度和方向跟踪未来发展趋势进行了展望,