论文部分内容阅读
建立了应用灰色神经网络对烧机矿化学成分进行预测的有关理论,并在此基础上构造了灰色神经网络模型。该模型中。灰色理论弱化数据序列波动性和神经网络特有的非线性适应性信息处理能力相融合,本模型能在小样本贫信息的条件下对烧结矿碱度做出比较准确的预测。该模型具有预测精度高、所需样本少、计算简便等优点,取得了比较满意的结果。和BP神经网络算法相比,灰色神经网络算法有很大的应用前景和推广价值。