论文部分内容阅读
古诗云“横看成岭侧成峰,远近高低各不同”说的是庐山从不同视角观看,所看到的景象不一样。这个道理其实对于数学也是适用的。面对同一道数学题,我们可以选取不同的视角去思考、分析,从而采用不同的方法来解决。下面以一道三角函数题为例,给出九种解法,供大家参考。题目:若cosα+2sinα=-5~(1/2),求tanα解法一:利用三角函数“定义”设角α终边上一点的坐标为(x,y),则cosα=x/r,sinα=y/r,
Ancient poetry cloud “horizontal as the ridge into a peak, different levels of different ” said Lushan is viewed from a different perspective, the scene you see is not the same. This truth is actually applicable to mathematics. In the face of the same math problem, we can choose different perspectives to think, analyze, and thus adopt different methods to solve. The following to a trigonometric function as an example, given nine solutions, for your reference. Title: If cosα + 2sinα = -5 ~ (1/2), find tanα Solution 1: Use the trigonometric function “define ” to set the angle a The coordinate of the last point is (x, y) r, sin α = y / r,