论文部分内容阅读
针对传统滚动轴承故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题,在现有的研究基础上提出一种基于小波包分析和有向无环图相关向量机相结合的故障诊断方法。将滚动轴承在不同的故障条件下的振动信号进行谐波小波包分解与重构,提取频带能量作为特征向量,应用有向无环图相关向量机建立从特征向量到故障模式之间的映射,最终做到对滚动轴承的故障诊断。结果表明,该方法能够快速准确地诊断出滚动轴承故障,验证了该方法的有效性和稳定性。此外,通过与支持向量机(SVM)的对比分析,显示了RVM在智能故障诊断应用中的优越性。