论文部分内容阅读
在目标跟踪中,传统的超像素跟踪算法在发生遮挡等情况后,会将非目标超像素标记为目标加入到特征空间.在对候选样本置信度计算中,利用特征空间中最近邻超像素来划定样本中超像素的簇归属会产生错误;而依据的近邻超像素数量过多时,又会造成分类误差的积累.为解决上述问题,本文提出一种健壮的超像素跟踪算法.本算法以贝叶斯算法为框架,首先,将前几帧进行超像素切割,提取特征并使用均值漂移聚类算法和基于超像素的外观表示模型进行分类和计算类置信度,放入特征空间中.其次,根据接下来几帧的平均中心误差确定最佳近邻数目.最后,在跟