论文部分内容阅读
具有缺失信息的不平衡数据,是如今分类问题面临的一个巨大挑战。针对此问题,本文提出一种基于马氏距离的自适应双权重过采样技术(Adaptive Double-weighted Mahalanobis Oversampling Technique,MAWOTE)。MAWOTE的主要思想是:(1)考虑到全局特征信息中更大的最优解空间,提出了一种基于小批量梯度下降(Mini-Batch Gradient Descent,MBGD)规则的非负潜在因子矩阵分解方法(Non-negative Latent Factor