一种基于径向基函数与模糊自适应共振的电子商务推荐方法

来源 :计算机应用研究 | 被引量 : 3次 | 上传用户:adai1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对协同过滤推荐算法面临数据稀疏特征时推荐效果较差,存在冷启动、稀疏性、可扩展性等问题,提出应用径向基函数神经网络(RBFN)去解决传统协同过滤的缺点,有效地对稀疏性数据进行平滑处理,得到消除稀疏性后的完全评价矩阵。并提出通过模糊自适应共振神经网络对用户相似性聚类进行改进,进行实时推荐。实验评价结果表明,该方法与传统协同过滤推荐方法相比,无论在推荐精度还是推荐相关性上都更为有效。
其他文献
针对化工过程数据的特点,提出一种基于集成经验模式分解(EEMD)滤波的过程数据混合去噪方法,以新秩一阶差分法抑制数据粗差干扰,以EEMD分解抑制脉冲干扰,分层滤波消除噪声成分。与传统的滤波方法相比,基于EEMD的混合滤波方法无须预先确定滤波器参数,是一种完全的数据驱动型方法,具有较好的自适应能力。仿真实验结果表明,对过程数据的滤波预处理可以增强对异常突变数据的检测处理,提高故障检测效果。