论文部分内容阅读
为提高小型风力发电系统单相正弦波逆变器的波形质量,提出采用BP神经网络和遗传算法结合的控制方法。通过遗传算法优化BP神经网络的权值和阈值,避免BP神经网络落入局部最优点,使优化后的BP神经网络能够更好地预测输出。在Matlab下建立了模型并进行了仿真研究,结果表明提出的遗传算法优化BP神经网络的方法能够控制逆变器输出较好的波形质量,同时对负载适应能力强,能够满足小型风力发电系统应用的要求。
In order to improve the waveform quality of single-phase sine-wave inverter for small wind power generation system, a control method based on BP neural network and genetic algorithm is proposed. The weights and thresholds of BP neural network are optimized by genetic algorithm to avoid the BP neural network falling into local optimum and the optimized BP neural network can predict the output better. The model is established and simulated in Matlab. The results show that the proposed genetic algorithm to optimize BP neural network method can control the output of the inverter better waveform quality, while adapting to the load, and can meet the needs of small wind power systems Request.