论文部分内容阅读
故障诊断有多种方法,利用支持向量机进行故障诊断是其中一种比较有效的方法。但是,故障征兆往往有多个,很难确定哪些征兆是关键的,哪些征兆是冗余的,这样就要搜集处理大量的数据,使支持向量机的结构变得复杂,诊断效率不高。为了提高故障诊断的效率,文中提出一种将K均值聚类、粗糙集、支持向量机相结合进行故障诊断的方法。这种方法首先利用K均值聚类对数据进行预处理,然后利用粗糙集对属性进行约简,最后再用支持向量机进行故障诊断。这样可以充分发挥粗糙集与支持向量机各自的优势,实例证明它可以提高故障诊断的速度和精确度,是一