论文部分内容阅读
针对数据分类问题的局限,提出一种基于改进型深度数据流形的数据分类算法并将其应用到人脸识别中。首先,通过采集人脸图像的深度信息,利用稀疏表示对其进行去噪处理;再结合图像的颜色信息,重新生成三维人脸信息数据库,通过对人脸数据的流形分析得到最优的降维结果,按十字十乘交叉验证法的原则选取训练集和测试集,将训练集输入支持向量机算法建立数据分类器;最后,将测试集输入训练完成的分类器中,实现人脸数据分类。选取ORL、Yale两类人脸图像标准数据库与传统人脸识别算法进行交叉对比实验,验证算法的优越性和可行性。实验结