论文部分内容阅读
研究神经网络集成是一种有效实用的分类方法,权值是影响神经网络集成性能的重要因素。为了克服神经网络集成固定权值的缺陷,提出一种基于聚类分析的综合神经网络集成算法。算法首先将样本分类,每类样本中加入其他样本类一定数量的中心样本,不同的神经网络学习不同类的样本。根据输入数据与样本类别之间的相关程度自适应调整集成权值。算法不仅用于自适应调整集成权值,而且是一种产生个体神经网络的训练方法。四个数据集上的仿真试验证实了算法的有效性。