论文部分内容阅读
针对间歇过程的非线性、多阶段性等特点及其三维数据形式,提出基于批次图像化的卷积自编码故障监测方法.首先,将每个批次数据看作一个灰度图,每个批次中数据变化可以看作图片的纹理变化,利用卷积自编码器(convolutional autoencoder, CAE)直接对间歇过程三维数据进行特征提取,避免三维数据展开成二维时导致的信息丢失,无需分阶段充分考虑批次全局信息,有效提取过程变量相关关系的动态变化;同时,利用卷积操作提取局部特征信息,自编码网络可以解决非线性问题,实现特征的无监督学习;然后,使用一类支