论文部分内容阅读
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers. The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4. The S doptant is prone to substitute the N atom bonded with only two nearest C atoms. The band structure calculation reveals that kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.