论文部分内容阅读
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances, an iterative learning fault diagnosis algorithm is proposed. Firstly, in order to measure the impact of fault on system between every consecutive output sampling instants, the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem, then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method. Afterwards, an observer-based fault diagnosis filter with virtual The fault is designed to estimate the equivalent fault, and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials, so the algorithm can detect and estimate the system faults adaptively. Simulation results of an electro-mechanical control system model with different types of faults illustra te the feasibility and effectiveness of this algorithm.