论文部分内容阅读
摘要:在设计电力结构设计时,因为电力建筑建设投资大而且自身具有一定的特殊性,所以对其结构的功能性与安全性要求也比较高。最优的结构方案可以使电力建筑结构的性能、性价比以及效益等都得到提高。本文主要以变电站中电力结构的设计优化为切入点,对电力建筑设计优化进行了简要的探讨及研究。
关键词:变电站;建筑结构;设计;优化
1 电力建筑结构体系
电力建筑结构设计是否合理对结构的抗震性、经济性与施工都有直接影响,应根据环境本身的实际情况,施工条件以及资金情况等因素,合理的确定应使用的结构形式。一般使用混合结构、框架和框架—混合组合结构三种。
1.1 混合结构
混合结构指的是屋顶、楼顶等水平承重结构使用混凝土钢筋等材料,而墙体等竖向承重结构则使用砌体材料。这种结构的优点是具有良好的竖向荷载能力,并且取材容易,易于施工。缺点是抗拉、抗弯以及抗震能力差,而且平面布置不灵活。
1.2 框架
框架结构体系是指用梁柱刚接组成的结构,其结构可根据需要灵活布置,柱高尺寸根据需要可以随意取用,平面布置也比较灵活,可以很好地满足使用要求与生产工艺。并且其结构强度与抗震能力都是混合结构无法比拟的,其竖向荷载能力也很强。
1.3 框架—混合联合结构
因为混合结构与框架结构各有优缺点,所以出现了另一种框架—混合联合结构。其根据环境资金等限制结合两种结构的有点,从而得到最理想的建筑结构。
2 变电站电力建筑结构的设计
2.1 选址
因为变电站在国民经济和生活中都处于很重到的地位,所以其选址应尤其重视。首先应明确电站的负荷中心,初步在电站负荷中心确定几个选址方案。因为线路的造价昂贵,甚至高于变电站本身造价,而且线路中还有网损所以变电站应靠近电站负荷中心。在选定的几个方案中,排除处于滑坡、塌陷区、溶洞地带以及容易发生滚石的地方,并考虑周围是否有无墓地以及矿藏的影响。在剩余的方案中选取征用耕地较少且交通便利的的最优位置。
2.2 初步设计
在得到土地选址审批后,就开始了初步设计阶段。该阶段应根据征用的土地对总平面设计,排水处理以及地基处理的具体设计提出2~3个方案进行对比,从中选取最好的方案。
总平面布置时要对以确定的建筑物进行合理布局,尽量合并公共设施,合理设计道路减少其占地面积。在可行的情况下尽量紧凑建筑,如电容器室与配电室呈一字型建造时可以取消消防间距。控制室、配电室意见电容器室建在同一建筑中可以减少占地,而且不需要考虑消防间距。为减少不必要的施工量,在竖向布置时应尽量利用原有地形,根据地形选择阶梯型或者平坡式布置。阶梯型两平面尽量保持在3.5米之内,此距离有以满足道路连接。平坡式则应尽量依据原有地形,但坡度不小于5%。挡土墙的高度低于6米属于经济型,高于8米之后应尽量采用钢筋混凝土扶壁式结构挡土墙。并且在挖填方量变动不大时,挡土墙高度越小越好。高度大于7米时,比较适合使用边坡,此时挡土墙断面较大不经济。而开挖高度小于6米时边坡则不经济,此时若按1:1放边坡会增加18m?/m,多增加6㎡/m的征地面积,还需要做护坡,所以此时做挡土墙较为实用。
2.3 场地绿化及硬化
为体现“以人为本”的设计理念,场地绿化和硬化是必不可少的。早期的设计中,受到经济等方面影响硬化材料多为混凝土硬化或者粘土砖铺砌。粘土砖铺砌非常受环境影响,水位较高的,并且土壤碱化严重的地区,短期内就会使粘土砖变酥,严重破坏了场地硬化,不利于开展工作。而现在水泥砖的兴起给场地硬化带来了极大的便利,不仅像粘土砖一样使用方便而且不受环境影响。而绿化时,变电站前区多用水泥砖铺路硬化,路边采用经济的绿篱,既美观又能起到净化空气的作用。变电站内则多采用200mm的碎石地坪,地坪下则使用3:7的灰土夯实,并保证其压实系数不小于0.95.
2.4 施工图设计
初步设计通过审核后,对于土建的建筑面积、平面布置、结构选型、地基处理等都有了明确的方案意见。施工图阶段就是结合初步设计的审查结果和现行的过节标准,从局部到整体进行设计。并且设计前应明确所有厂家的资料、原料尺寸以及电气提资等。
3 优化设计的对策研究
3.1 站址方案的比较选择
通过对多个方案进行全方面的比较,由专业人员进行初步的评定选出最优方案,并确立明确的、合理的、科学的评定标准。结合实际再确立备选方案,以备需要。最优方案选定后还应进一步的进行完善,然后确定最终方案。
3.2 主要结构的方案设计与优化
建构方案设计一般包含立面与平面的方案设计、结构及基础方案设计、暖通风及水工方案设计。考虑到变电站的重要程度以及所处位置的抗震强度,其主要建筑物使用钢筋混凝土来建设,而支架以及构架则使用钢结构。其平面设计应满足两个要求,美观性以及各功能房间的空间性。其建筑基础形式则需要根据实际情况来选取。根据土质情况选取天然地基处理、强夯处理或者灌注水泥土搅拌桩等方法,确保地基的承受能力。暖通风设计则需要满足消防与设备的运行能力即可。
3.3 主建筑结构的施工与抗震
我们应从唐山地震以及汶川地震中西区教训,提高对变电站抗震设计的重视。对于已有建筑物应进行抗震加固,而将要新建的建筑结构应根据需要与以往存在的问题采取一些有效措施。
建筑结构的抗震能力与地基时密不可分的,地基及场地条件对建筑结构的抗震能力有着直接的影响。在场地选取时应尽量远离地震带以及松软土质的地方。地基的处理时防震的根本方法,如在湿陷性地区采用垫层、打桩或者换土等方法,不可将未处理的湿陷性原土作为持力层。地基基础与上部建筑结构是协同工作的,在重视上部结构的同时,也应加强地基基础的处理。
结构选型时由建筑物的用途来决定的,设计结构时应明确传力途径以及计算简图。增强建筑结构中构造的连接也能有效的增强抗震能力,同时,为避免因局部构件损坏而影响整个结构,应在结构体系中设计多道防线,并保证其具有良好的变形能力。
横墙作为承担水平震力的结构,在设计时应严格按照要求使用,并使其具有足够的承载能力。屋盖、楼盖的作用是将水平震力传递给横墙,当横墙之间的距离过大时,应按空旷房屋计算,。水平圈梁也可以有效地增加房屋的整体性以及内外墙的连接性。
拥有了正确的选址以及合理的抗震设计后,还有一个环节尤为重要。施工质量的好坏不仅影响建筑的质量,对抗震设计能否达到预期效果也有一定的影响。所以在施工时,应加强施工监督,确保严格按照设计图纸进行施工,并防止其偷工減料,保障建筑结构能百分百的建造。
3.4 排水及消防系统的设计与优化
因为变电站中生活用水以及消防用水需求量都不是很大,所以可以考虑市政供水。给水系统主要是生活和消防两方面,尽量将其分开设计。排水系统采用分流排放的方法即可。有一点值得注意,当建筑物与建筑物之间、设备与建筑物之间以及设备与设备之间的距离不能达到消防规定的标准时,应使用防火墙以及防火窗等方法代替处理。
4 结语
根据变电站建筑结构优化设计的研究,大多可以参考应用于其它电力建筑结构的设计中。其排水、消防、抗震以及设计步骤都是相同的。虽然每个建筑的实际情况是千变万化的,但是只要抓住设计的重点,都可以达到预期的效果。在设计时要参考成功案例中的优点,吸取失败案例中的教训,不断进步,不断创新才能得到最合适的方案。保证电力建筑的实用性以及安全性。
参考文献:
[1] 黄玮.刍议电力建筑结构优化设计对策[J].城市建设理论研究(电子版),2013,15(16):11-12.
[2] 王胜奇.变电站建筑结构设计要点及优化策略分析[J].城市建设理论研究(电子版),2013,17(22):28-29.
[3] 阿卜来提.克热木.电力建筑结构的优化设计[J].城市建设理论研究(电子版),2013,22(23):31-32.
关键词:变电站;建筑结构;设计;优化
1 电力建筑结构体系
电力建筑结构设计是否合理对结构的抗震性、经济性与施工都有直接影响,应根据环境本身的实际情况,施工条件以及资金情况等因素,合理的确定应使用的结构形式。一般使用混合结构、框架和框架—混合组合结构三种。
1.1 混合结构
混合结构指的是屋顶、楼顶等水平承重结构使用混凝土钢筋等材料,而墙体等竖向承重结构则使用砌体材料。这种结构的优点是具有良好的竖向荷载能力,并且取材容易,易于施工。缺点是抗拉、抗弯以及抗震能力差,而且平面布置不灵活。
1.2 框架
框架结构体系是指用梁柱刚接组成的结构,其结构可根据需要灵活布置,柱高尺寸根据需要可以随意取用,平面布置也比较灵活,可以很好地满足使用要求与生产工艺。并且其结构强度与抗震能力都是混合结构无法比拟的,其竖向荷载能力也很强。
1.3 框架—混合联合结构
因为混合结构与框架结构各有优缺点,所以出现了另一种框架—混合联合结构。其根据环境资金等限制结合两种结构的有点,从而得到最理想的建筑结构。
2 变电站电力建筑结构的设计
2.1 选址
因为变电站在国民经济和生活中都处于很重到的地位,所以其选址应尤其重视。首先应明确电站的负荷中心,初步在电站负荷中心确定几个选址方案。因为线路的造价昂贵,甚至高于变电站本身造价,而且线路中还有网损所以变电站应靠近电站负荷中心。在选定的几个方案中,排除处于滑坡、塌陷区、溶洞地带以及容易发生滚石的地方,并考虑周围是否有无墓地以及矿藏的影响。在剩余的方案中选取征用耕地较少且交通便利的的最优位置。
2.2 初步设计
在得到土地选址审批后,就开始了初步设计阶段。该阶段应根据征用的土地对总平面设计,排水处理以及地基处理的具体设计提出2~3个方案进行对比,从中选取最好的方案。
总平面布置时要对以确定的建筑物进行合理布局,尽量合并公共设施,合理设计道路减少其占地面积。在可行的情况下尽量紧凑建筑,如电容器室与配电室呈一字型建造时可以取消消防间距。控制室、配电室意见电容器室建在同一建筑中可以减少占地,而且不需要考虑消防间距。为减少不必要的施工量,在竖向布置时应尽量利用原有地形,根据地形选择阶梯型或者平坡式布置。阶梯型两平面尽量保持在3.5米之内,此距离有以满足道路连接。平坡式则应尽量依据原有地形,但坡度不小于5%。挡土墙的高度低于6米属于经济型,高于8米之后应尽量采用钢筋混凝土扶壁式结构挡土墙。并且在挖填方量变动不大时,挡土墙高度越小越好。高度大于7米时,比较适合使用边坡,此时挡土墙断面较大不经济。而开挖高度小于6米时边坡则不经济,此时若按1:1放边坡会增加18m?/m,多增加6㎡/m的征地面积,还需要做护坡,所以此时做挡土墙较为实用。
2.3 场地绿化及硬化
为体现“以人为本”的设计理念,场地绿化和硬化是必不可少的。早期的设计中,受到经济等方面影响硬化材料多为混凝土硬化或者粘土砖铺砌。粘土砖铺砌非常受环境影响,水位较高的,并且土壤碱化严重的地区,短期内就会使粘土砖变酥,严重破坏了场地硬化,不利于开展工作。而现在水泥砖的兴起给场地硬化带来了极大的便利,不仅像粘土砖一样使用方便而且不受环境影响。而绿化时,变电站前区多用水泥砖铺路硬化,路边采用经济的绿篱,既美观又能起到净化空气的作用。变电站内则多采用200mm的碎石地坪,地坪下则使用3:7的灰土夯实,并保证其压实系数不小于0.95.
2.4 施工图设计
初步设计通过审核后,对于土建的建筑面积、平面布置、结构选型、地基处理等都有了明确的方案意见。施工图阶段就是结合初步设计的审查结果和现行的过节标准,从局部到整体进行设计。并且设计前应明确所有厂家的资料、原料尺寸以及电气提资等。
3 优化设计的对策研究
3.1 站址方案的比较选择
通过对多个方案进行全方面的比较,由专业人员进行初步的评定选出最优方案,并确立明确的、合理的、科学的评定标准。结合实际再确立备选方案,以备需要。最优方案选定后还应进一步的进行完善,然后确定最终方案。
3.2 主要结构的方案设计与优化
建构方案设计一般包含立面与平面的方案设计、结构及基础方案设计、暖通风及水工方案设计。考虑到变电站的重要程度以及所处位置的抗震强度,其主要建筑物使用钢筋混凝土来建设,而支架以及构架则使用钢结构。其平面设计应满足两个要求,美观性以及各功能房间的空间性。其建筑基础形式则需要根据实际情况来选取。根据土质情况选取天然地基处理、强夯处理或者灌注水泥土搅拌桩等方法,确保地基的承受能力。暖通风设计则需要满足消防与设备的运行能力即可。
3.3 主建筑结构的施工与抗震
我们应从唐山地震以及汶川地震中西区教训,提高对变电站抗震设计的重视。对于已有建筑物应进行抗震加固,而将要新建的建筑结构应根据需要与以往存在的问题采取一些有效措施。
建筑结构的抗震能力与地基时密不可分的,地基及场地条件对建筑结构的抗震能力有着直接的影响。在场地选取时应尽量远离地震带以及松软土质的地方。地基的处理时防震的根本方法,如在湿陷性地区采用垫层、打桩或者换土等方法,不可将未处理的湿陷性原土作为持力层。地基基础与上部建筑结构是协同工作的,在重视上部结构的同时,也应加强地基基础的处理。
结构选型时由建筑物的用途来决定的,设计结构时应明确传力途径以及计算简图。增强建筑结构中构造的连接也能有效的增强抗震能力,同时,为避免因局部构件损坏而影响整个结构,应在结构体系中设计多道防线,并保证其具有良好的变形能力。
横墙作为承担水平震力的结构,在设计时应严格按照要求使用,并使其具有足够的承载能力。屋盖、楼盖的作用是将水平震力传递给横墙,当横墙之间的距离过大时,应按空旷房屋计算,。水平圈梁也可以有效地增加房屋的整体性以及内外墙的连接性。
拥有了正确的选址以及合理的抗震设计后,还有一个环节尤为重要。施工质量的好坏不仅影响建筑的质量,对抗震设计能否达到预期效果也有一定的影响。所以在施工时,应加强施工监督,确保严格按照设计图纸进行施工,并防止其偷工減料,保障建筑结构能百分百的建造。
3.4 排水及消防系统的设计与优化
因为变电站中生活用水以及消防用水需求量都不是很大,所以可以考虑市政供水。给水系统主要是生活和消防两方面,尽量将其分开设计。排水系统采用分流排放的方法即可。有一点值得注意,当建筑物与建筑物之间、设备与建筑物之间以及设备与设备之间的距离不能达到消防规定的标准时,应使用防火墙以及防火窗等方法代替处理。
4 结语
根据变电站建筑结构优化设计的研究,大多可以参考应用于其它电力建筑结构的设计中。其排水、消防、抗震以及设计步骤都是相同的。虽然每个建筑的实际情况是千变万化的,但是只要抓住设计的重点,都可以达到预期的效果。在设计时要参考成功案例中的优点,吸取失败案例中的教训,不断进步,不断创新才能得到最合适的方案。保证电力建筑的实用性以及安全性。
参考文献:
[1] 黄玮.刍议电力建筑结构优化设计对策[J].城市建设理论研究(电子版),2013,15(16):11-12.
[2] 王胜奇.变电站建筑结构设计要点及优化策略分析[J].城市建设理论研究(电子版),2013,17(22):28-29.
[3] 阿卜来提.克热木.电力建筑结构的优化设计[J].城市建设理论研究(电子版),2013,22(23):31-32.