论文部分内容阅读
提出了一种基于文本和类别信息的改进KNN文本分类算法。传统的KNN算法在计算样本相似度时利用的是文本和特征的相关信息,因此存在计算量大的明显缺陷,使其在具有大量高维样本的文本分类中缺乏实用性。新算法利用文本和类别的相关信息计算样本间的相似度,能够对特征维数进行有效的压缩。实验表明,该算法有较高的文本分类效率。