论文部分内容阅读
在对支持向量机(Support Vector Machines,SVM)方法的参数性能进行分析的基础上,提出了将Grid-search方法引入至基于支持向量机的短期负荷预测算法中,以解决支持向量机方法的参数选择问题。该参数选择方法减少了参数选择的盲目性,提高了SVM的预测精度。通过在East-Slovakia Power Distribution Company提供的电网运行数据上验算,证明了该改进方法的正确性和有效性。