论文部分内容阅读
中图分类号 R284;R285 文献标志码 A 文章编号 1001-0408(2021)18-2287-07
DOI 10.6039/j.issn.1001-0408.2021.18.18
摘 要 目的:综述代谢酶和转运体介导的药食同源中药中黄酮类成分对其他药物的影响,为临床合理用药提供参考。方法:介绍药食同源中药中常见的黄酮类成分,总结代谢酶和转运体对药物在人体内吸收和代谢过程中的作用,并对代谢酶和转运体介导的药食同源中药中常见黄酮类成分对其他药物的影响进行综述。结果与结论:药食同源中药中的槲皮素、山柰酚、木犀草素、芦丁、甘草苷、柚皮苷、染料木素等黄酮类成分可以提高主要由细胞色素P450代谢和P-糖蛋白、乳腺癌耐药相关蛋白转运的药物(如小分子激酶抑制剂、抗肿瘤药物、质子泵抑制剂等)的药-时曲线下面积和最大血药浓度;槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黄酮类成分对葡萄糖醛酸转移酶家族和有机阴离子转运体、有机阳离子转运体具有一定的抑制作用,可以减少许多药物类底物如抗病毒药物(如阿昔洛韦、阿德福韦)等的代谢,降低其清除率,提高其生物利用度。应充分重视药食同源中药对代谢酶和转运体的影响,同时加强药食同源中药和其他药物相互作用的体内研究(尤其是临床研究)及药效学研究。
关键词 药食同源;黄酮类成分;药物相互作用;代谢酶;转运体
药食同源是指在中医药学研究中,药物与食物之间并无绝对的分界线,如唐初杨上善所撰《黄帝内经太素》一书中写道:“空腹食之为食物,患者食之为药物”[1],就反映出了“药食同源”的思想。药食同源的中药在日常生活中应用广泛,如决明子、百合、肉豆蔻、肉桂、罗汉果等,既可药用,也可食用。近年来,有关药动学改变引起的药物相互作用和不良反应屡有报道[2]。药物相互作用的靶点主要包括代谢酶和转运体,它们均为机体处置药物的关键蛋白,且大部分药物的体内处置过程均需要它们的共同参与[2]。黄酮类化合物对代谢酶和转运体有较强的调节作用[3],因此应重视富含黄酮类成分的药食同源中药对其他药物药动学的潜在影响。基于此,笔者从代谢酶和转运体角度,综述了药食同源中药中黄酮类成分对其他药物的影响,以期从药动学角度为临床合理使用药食同源中药提供参考。
1 药食同源中药中的黄酮类成分
黄酮类化合物在植物中广泛存在,以芹菜素、木犀草素为代表的黄酮类成分在药食同源中药中分布广泛且含量较高[3](表1)。这些黄酮类成分对于诸多代谢酶和转运体有不同程度的调控作用,需要关注这类成分对同时服用的其他药物体内过程的影响。
2 代谢酶和转运体对药物在人体内吸收和代谢的影响
2.1 代謝酶
药物在人体内的代谢主要分为以氧化、还原及水解反应为主的Ⅰ相代谢和以结合反应为主的Ⅱ相代谢。细胞色素P450(CYPs)是参与药物Ⅰ相代谢的主要酶系,目前已被证实人体中有十多个CYPs亚型酶参与了药物代谢,其中CYP3A4、CYP2C19和CYP2C9对药物代谢的影响较大[26]。Ⅱ相代谢的研究主要针对葡萄糖醛酸转移酶(UGTs)和磺酸基转移酶(SULTs)[26-27],二者的底物分布广泛,包含了来自外源和内源的一系列结构不同的亲脂分子,其中外源性底物包括药物、环境毒素和饮食中消耗的生物活性化合物等[27-28]。药食同源中药中的黄酮类成分可能通过调节CYPs、UGTs和SULTs而影响药物的体内代谢过程。
2.2 转运体
转运体按照转运方式被分为以P-糖蛋白(P-gp)、多药耐药相关蛋白(MRP)、乳腺癌耐药相关蛋白(BCRP)为代表的原发性主动转运型和以有机阴离子转运多肽(OATP)、有机阴离子转运体(OAT)、有机阳离子转运体(OCT)为代表的继发性主动转运型[29]。其中,P-gp是三磷酸腺苷结合盒转运蛋白超家族中的一员,在肝、肾、胰腺等组织和血脑屏障中广泛表达,其底物包含大量结构和功能不同的药物,如质子泵抑制剂、抗病毒药物、血管紧张素Ⅱ受体拮抗剂、酪氨酸激酶抑制剂、大环内酯类抗菌药物、免疫抑制剂、抗凝血药物、抗癫痫药物等均是P-gp的高敏感性底物[29]。P-gp可以将药物从细胞内排出,降低药物在体内的生物利用度,被认为是多药耐药问题的主要原因之一[29]。另外,MRP也是多药耐药的形成机制之一,在多种肿瘤中都有表达,其主要参与细胞内外多种复合物的转运,调整细胞内物质的分布;其中MRP1和MRP2是人体内表达水平较高的两类蛋白,也是对药物相互作用影响较大的两类蛋白[29]。BCRP是从真核细胞中发现的一类较为重要的多药耐药蛋白,抗病毒药物、他汀类药物、酪氨酸激酶抑制剂和大环内酯类抗菌药物均是BCRP的高敏感代表性底物,而BCRP的活性增强会直接导致这些药物在人体内的生物利用度下降[29]。OATP具有广泛的底物特异性,许多药物(如他汀类药物、血管紧张素转换酶受体抑制剂、大环内酯类抗菌药物和酪氨酸激酶抑制剂等)均是OATP的高亲和力底物[30]。OAT对药物(抗菌药物、抗病毒药物、利尿剂、非甾体抗炎药等)、毒素(汞、马兜铃酸等)和营养素(维生素、类黄酮等)在体内的转运过程有着较大的影响[31]。OCT主要负责转运亲水性、低分子量的有机阳离子,其典型底物有二甲双胍、奥沙利铂等,相应抑制剂有奎宁、丙吡胺等[32]。OATP、OAT和OCT可以介导多种化合物、代谢物等的吸收,其活性的增强可以加速这些药物底物的体内清除过程,提升部分药物的清除率,其中OATP和OAT对药物相互作用的影响也是研究者重点关注的领域。
3 代谢酶和转运体介导的药食同源中药中常见的黄酮类成分对其他药物的影响
3.1 槲皮素
槲皮素可抑制大鼠体内CYPs酶活性,减少阿霉素、溴隐亭、吡格列酮、依托泊苷、环孢素等药物的代谢,提高这些药物的生物利用度[33]。低浓度槲皮素可增强Caco-2细胞葡萄糖醛酸酶活性[34]。该成分也是人体肝脏中SULT1A1的有效抑制剂[35]。除代谢酶外,槲皮素对大部分转运蛋白均表现出较强的抑制作用。例如其可通过抑制P-gp的表达来增大P-gp底物(如长春新碱、紫杉醇、阿霉素、奎尼丁、地高辛、环孢素等)的药-时曲线下面积(AUC)[33];还可抑制其他耐药转运蛋白(如BCRP、MRP等)的表达,增加部分合用药物(如磺胺吡啶等)的AUC和最大血药浓度(cmax),抑制HEK293细胞中OATP1A2和OATP2B1的转运活性,从而降低此类药物的体内清除率[33]。此外,其能以剂量依赖的方式降低抗逆转录病毒药物阿德福韦介导的细胞毒性,表明其对OAT1有一定程度的抑制作用[36],在药物联用过程中应加以注意。 3.2 芹菜素
芹菜素可抑制CYP3A4的活性,增加大鼠体内小分子激酶抑制剂(如奈拉替尼、培米替尼等)和文拉法辛的AUC和cmax[37]。Caco-2细胞模型研究结果表明,芹菜素可诱导UGT1A1的表达[38]。除了对代谢酶的作用外,芹菜素还可以抑制P-gp和BCRP的表达,减少抗肿瘤药物(如紫杉醇、阿霉素)的外排[39-40];抑制OAT1活性,减少抗病毒药物(如阿昔洛韦、阿德福韦)的代谢,从而提高这些药物的AUC和cmax[36]。
3.3 山柰酚
山柰酚可以抑制大鼠体内CYP3A4和P-gp的表达,提高硝苯地平、氨氯地平、依托泊苷、他莫昔芬、咪达唑仑和奎尼丁的AUC和cmax[41-44]。在转运体方面,山柰酚可以抑制P-gp、BCRP的表达,减少抗肿瘤药物(如他莫昔芬、紫杉醇、依托泊苷、阿霉素、替莫唑胺、喜树碱、拓扑替康等)、抗逆转录病毒药物(如利托那韦、沙奎那韦、阿德福韦等)和钙离子通道阻滞剂(如硝苯地平、氨氯地平等)的外排,提高这些药物的AUC[45-47]。同时,山柰酚还可以抑制OATP1B1、OATP1A2的表达,从而减少非索非那定、阿托伐他汀和甲氨蝶呤等药物的代谢,降低其清除率,提高其生物利用度[48-49]。
3.4 木犀草素
木犀草素可以抑制人肝微粒体中CYP3A4、CYP2C8、CYP2C9的活性,还可抑制HEK293细胞中OATP1B1的活性,从而减少甲氨蝶呤的代謝[49-50];大鼠实验研究也证实,合用甲氨蝶呤和木犀草素可以增加甲氨蝶呤的AUC0-t[49,51]。
3.5 柚皮素
柚皮素可以抑制CYP1A2、CYP3A4的活性,减少咪达唑仑、雷沙吉兰、辛伐他汀、紫杉醇在大鼠体内的AUC和cmax[52-54]。除代谢酶外,柚皮素可通过抑制大鼠体内P-gp的表达来减少非洛地平、雷沙吉兰和阿霉素的外排,提高这些药物的生物利用度[53,55-56]。
3.6 高良姜素
分子对接研究表明,高良姜素对CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4均表现出较强的亲和性[57]。大鼠实验研究也证实,高良姜素可以显著降低CYP1A2和CYP2B3探针药物(非那西丁、安非他酮)的AUC0-∞和cmax[57-58]。
3.7 杨梅素
体外研究表明,杨梅素是CYP2C9和CYP2D6的非竞争性抑制剂,是CYP2B1的竞争性抑制剂,也是CYP3A2、CYP2C11和CYP2D1的抑制剂[59]。大鼠体内研究表明,杨梅素可抑制CYP2C9和CYP3A4的表达,从而显著降低非那西丁的AUC和cmax[60]。在转运体方面,杨梅素可抑制大鼠体内P-gp的表达,从而减少抗肿瘤药物(如多西紫杉醇、阿霉素)的外排,增加药物的AUC和cmax[61-62]。此外,杨梅素还可以逆转体外细胞中MRP1和MRP2介导的长春新碱耐药性,从而增加长春新碱的吸收[63]。
3.8 芦丁
芦丁可以通过抑制CYP3A4的活性来增加大鼠体内环孢素的AUC和cmax[64]。除CYPs外,芦丁对大部分药物转运蛋白均有不同程度的调控作用。细胞研究表明,芦丁可以下调P-gp的表达,从而显著降低阿霉素、紫杉醇、格列本脲、伊达比星的耐药性[65-66]。此外,芦丁可以抑制BCRP的活性,从而增加双氯芬酸的生物利用度[67];抑制OATP1A2和OATP2B1的转运活性,从而减少其对非索非那定和他汀类药物的代谢[68-69]。
3.9 甘草苷
甘草苷对CYPs的影响尚未形成统一的结论。部分研究发现,甘草苷可以抑制CYP1A1和CYP2C9的活性[70];但也有另外的研究发现,甘草苷对CYPs具有一定的诱导作用[71-72]。除CYPs以外,甘草苷及其苷元对多种UGTs亚型酶(如UGT1A1、 UGT1A9等)介导的葡萄糖醛酸化反应均有竞争性抑制作用[73],这可能是甘草苷与药物相互作用的机制之一。此外,甘草苷还可以上调Caco-2细胞中多种外排蛋白的表达,可能加速药物的外排,降低药物的生物利用度[74]。
3.10 表儿茶素
表儿茶素可以抑制大鼠体内CYP2C9和CYP3A4的表达,从而提高诸多药物(如对乙酰氨基酚、尼卡地平、维拉帕米、地尔硫 、辛伐他汀、非那西丁、紫杉醇等)的AUC和cmax[75]。此外,表儿茶素还可能通过抑制CYP3A4的活性来增加健康志愿者体内丁螺环酮的AUC[75]。
3.11 染料木素、葛根素、大豆苷
染料木素、葛根素、大豆苷对主要的CYPs亚型酶(如CYP2B6、CYP2C9、CYP3A4、CYP1A1)具有显著的抑制作用,从而减少非那西丁、安非他酮、奥美拉唑、紫杉醇、他林洛尔等药物的代谢,并有可能增加这些药物的血药浓度[76-77]。体外细胞实验表明,染料木素对UGT2B7有较强的抑制作用[78];葛根素可以上调大鼠心脏成纤维细胞中UGT1A1的表达[79];大豆苷和染料木素对肿瘤细胞中P-gp和BCRP的活性均表现出较强的逆转作用,可以抑制肿瘤细胞外排蛋白的表达,有利于缓解抗肿瘤药物的耐药性[47,80]。
代谢酶、转运体介导的药食同源中药中常见黄酮类成分对其他药物的影响分别见表2、表3。
4 讨论
本文对代谢酶和转运体介导的药食同源中药中常见的黄酮类成分对其他药物的影响进行了综述。结果表明,黄酮类成分在药食同源中药中含量丰富;其中的槲皮素、山柰酚、木犀草素、芦丁、甘草苷、柚皮苷、染料木素等黄酮类成分可以提高主要由CYPs代谢和P-gp、BCRP、MRP转运的药物(如小分子激酶抑制剂、抗肿瘤药物、质子泵抑制剂等)的AUC和cmax,槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黄酮类成分对UGTs家族和OAT、OATP具有一定的调控作用。这提示在使用抗肿瘤药物、小分子激酶抑制剂、质子泵抑制剂等药物时,可以适当选择一些安全性较高的药食同源中药配伍使用,以提高临床疗效;但另一方面,针对部分治疗窗狭窄的药物,应尽量避免其与药食同源中药一起使用,以免使前述药物的cmax超出安全范围。 在进行文献研究的过程中,笔者发现药食同源中药与其他药物相互作用的研究虽然已有较大的发展,但仍存在一些不足:(1)目前的药物相互作用研究仍以动物实验和体外实验为主,尚需加强体内研究(尤其是临床研究);(2)目前的研究大多以药动学为核心展开,缺乏将药动学与药效学结合的研究;(3)中药对转运体和代谢酶影响的研究众多,但缺少转运体和代谢酶对中药药动学影响的研究。这些不足之处是中药与其他药物相互作用研究未来需要努力的方向。
参考文献
[ 1 ] 杨上善.黄帝内经太素[M].李云,点校.北京:学苑出版社,2007:9.
[ 2 ] 周燕,武新安,邓毅.药物转运体与代谢酶间的协作关系对肠肝药物处置的影响[J].药学学报,2020,55(8):1762-1767.
[ 3 ] HOSTETLER G L,RALSTON R A,SCHWARTZ S J. Flavones:food sources,bioavailability,metabolism,and bioactivity[J]. Adv Nutr,2017,8(3):423-435.
[ 4 ] BAI L,LI X,HE L,et al. Antidiabetic potential of flavonoids from traditional Chinese medicine:a review[J]. Am J Chin Med,2019,47(5):933-957.
[ 5 ] 赵永艳,胡瀚文,彭腾,等.佛手的化学成分药理作用及开发应用研究进展[J].时珍国医国药,2018,29(11):2734- 2736.
[ 6 ] 张东,邬国栋.沙棘黄酮的化学成分及药理作用研究进展[J].中国药房,2019,30(9):1292-1296.
[ 7 ] 吴龙火,张剑.枳椇子的化学成分研究[J].时珍国医国药,2013,24(5):1028-1029.
[ 8 ] 尹伟,宋祖荣,刘金旗,等.香橼化学成分研究[J].中药材,2015,38(10):2091-2094.
[ 9 ] 刘均玉.橘皮的化学成分与黄酮类化合物的提取、纯化研究[D].福州:福建师范大学,2009.
[10] SHAO Y,SUN Y,LI D,et al. Chrysanthemum indicum L.:a comprehensive review of its botany,phytochemistry and pharmacology[J]. Am J Chin Med,2020,48(4):871- 897.
[11] 徐凌玉,李振麟,蔡芷辰,等.薄荷化学成分的研究[J].中草药,2013,44(20):2798-2802.
[12] 王艳慧.化橘红的研究进展[J].世界科学技术(中医药现代化),2017,19(6):1076-1082.
[13] MARTINEZ M,POIRRIER P,CHAMY R,et al. Taraxacum officinale and related species:an ethnopharmacolo- gical review and its potential as a commercial medicinal plant[J]. J Ethnopharmacol,2015,169:244-262.
[14] PASTORINO G,CORNARA L,SOARES S,et al. Liquorice(Glycyrrhiza glabra):a phytochemical and pharmacological review[J]. Phytother Res,2018,32(12):2323-2339.
[15] 劉磊磊,肖卓炳.野菊花的化学成分研究[J].中草药,2018,49(22):5254-5258.
[16] 刘琳,程伟.槐花化学成分及现代药理研究新进展[J].中医药信息,2019,36(4):125-128.
[17] BASRI A M,TAHA H,AHAMAD N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation[J]. Pharmacogn Rev,2017,11(21):43-56.
[18] SOLEIMANI V,SAHEBKAR A,HOSSEINZADEH H. Turmeric (Curcuma longa) and its major constituent(cur- cumin) as nontoxic and safe substances:review[J]. Phytother Res,2018,32(6):985-995.
[19] 吴华东.山柰化学成分的研究[D].武汉:华中科技大学,2016.
[20] 李昕,潘俊娴,陈士国,等.葛根化学成分及药理作用研究进展[J].中国食品学报,2017,17(9):189-195.
[21] FU J,WANG Z,HUANG L,et al. Review of the botanical characteristics,phytochemistry,and pharmacology of Astragalus membranaceus(Huangqi)[J]. Phytother Res,2014,28(9):1275-1283. [22] 陳俏,刘晓月,石亚囡,等.赤小豆化学成分的研究[J].中成药,2017,39(7):1419-1422.
[23] 袁珊琴,于能江,赵毅民,等.淡豆豉中的化学成分[J].中药材,2008,31(8):1172-1174.
[24] 黄艳,郑金燕,杨刚劲,等.苦丁茶冬青根的化学成分研究[J].中草药,2015,46(16):2371-2376.
[25] 侯晋军,韩利文,杨官娥,等.罗布麻叶化学成分和药理活性研究进展[J].中草药,2006,37(10):1603-1605.
[26] MANIKANDAN P,NAGINI S. Cytochrome P450 structure,function and clinical significance:a review[J]. Curr Drug Targets,2018,19(1):38-54.
[27] MEECH R,HU D G,MCKINNON R A,et al. The UDP- glycosyltransferase(UGT) superfamily:new members,new functions,and novel paradigms[J]. Physiol Rev,2019,99(2):1153-1222.
[28] SUIKO M,KUROGI K,HASHIGUCHI T,et al. Updated perspectives on the cytosolic sulfotransferases(SULTs) and SULT-mediated sulfation[J]. Biosci Biotechnol Biochem,2017,81(1):63-72.
[29] FDA. Drug development and drug interactions:table substrates inhibitors and inducers[EB/OL].(2020-10-03)[2020- 12-14].https//www.fda.gov/drugs/drug-interactions-labe- ling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
[30] OSWALD S. Organic anion transporting polypeptide(OATP) transporter expression,localization and function in the human intestine[J]. Pharmacol Ther,2019,195:39-53.
[31] NIGAM S K,BUSH K T,MARTOVETSKY G,et al. The organic anion transporter(OAT) family:a systems bio- logy perspective[J]. Physiol Rev,2015,95(1):83-123.
[32] KOPESELL H. Organic cation transporters in health and disease[J]. Pharmacol Rev,2020,72(1):253-319.
[33] MOHOS V,FLISZ?R-NY?L E,UNGV?RI O,et al. Inhibitory effects of quercetin and its main methyl,sulfate,and glucuronic acid conjugates on cytochrome P450 enzymes,and on OATP,BCRP and MRP2 transporters[J]. Nutrients,2020,12(8):2306.
[34] GALIJATOVIC A,WALLE U K,WALLE T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells[J]. Pharm Res,2000,17(1):21-26.
[35] PACIFICI G M. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals:a review of the literature[J]. Int J Clin Pharmacol Ther,2004,42(9):488-495.
[36] WU T,LI H,CHEN J,et al. Apigenin,a novel candidate involving herb-drug interaction(HDI),interacts with organic anion transporter 1(OAT1)[J]. Pharmacol Rep,2017,69(6):1254-1262.
[37] CHEN Y,JIA X,CHEN J,et al. The pharmacokinetics of raloxifene and its interaction with apigenin in rat[J]. Molecules,2010,15(11):8478-8487.
[38] SVEHL?KOV? V,WANG S,JAKUB?KOV? J,et al. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in Caco-2 cells[J]. Carcinogenesis,2004,25(9):1629-1637. [39] KUMAR K K,PRIYANKA L,GNANANATH K,et al. Pharmacokinetic drug interactions between apigenin,rutin and paclitaxel mediated by P-glycoprotein in rats[J]. Eur J Drug Metab Pharmacokinet,2015,40(3):267-276.
[40] FAN X,BAI J,ZHAO S,et al. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein(BCRP):from library screening to biological evaluation to structure-activity relationship[J]. Toxicol In Vitro,2019,61:104642.
[41] PARK J W,CHOI J S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats[J]. Chin J Nat Med,2019,17(9):690-697.
[42] LI C,LI X,CHOI J S. Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats[J]. Arch Pharm Res,2009,32(1):133-138.
[43] PIAO Y,SHIN S C,CHOI J S. Effects of oral kaempferol on the pharmacokinetics of tamoxifen and one of its metabolites,4-hydroxytamoxifen,after oral administration of tamoxifen to rats[J]. Biopharm Drug Dispos,2008,29(4):245-249.
[44] HA H R,CHEN J,LEUENBERGER P M,et al. In vitro inhibition of midazolam and quinidine metabolism by flavonoids[J]. Eur J Clin Pharmacol,1995,48(5):367-371.
[45] PATEL J,BUDDHA B,DEY S,et al. In vitro interaction of the HIV protease inhibitor ritonavir with herbal consti- tuents:changes in P-gp and CYP3A4 activity[J]. Am J Ther,2004,11(4):262-277.
[46] LIMTRAKUL P,KHANTAMAT O,PINTHA K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin[J]. J Chemother,2005,17(1):86-95.
[47] IMAI Y,TSUKAHARA S,ASADA S,et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance[J]. Cancer Res,2004,64(12):4346-4352.
[48] MANDERY K,BUJOK K,SCHMIDT I,et al. Influence of the flavonoids apigenin,kaempferol,and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1[J]. Biochem Pharmacol,2010,80(11):1746-1753.
[49] FAN X,BAI J,HU M,et al. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects
[J]. Toxicology,2020,437:152445.
[50] QUINTIERI L,PALATINI P,NASSI A,et al. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP3A4 and CYP3A5 enzymes[J]. Biochem Pharmacol,2008,75(6):1426-1437.
[51] AN G,WANG X,MORRIS M E. Flavonoids are inhibitors of human organic anion transporter 1(OAT1)-media- ted transport[J]. Drug Metab Dispos,2014,42(9):1357- 1366. [52] LU W J,FERLITO V,XU C,et al. Enantiomers of naringenin as pleiotropic,stereoselective inhibitors of cytochrome P450 isoforms[J]. Chirality,2011,23(10):891- 896.
[53] SANDEEP M S,SRIDHAR V,PUNEETH Y,et al. Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro[J]. Drug Dev Ind Pharm,2014,40(10):1371-1377.
[54] MOTAWI T K,TELEB Z A,EL-BOGHDADY N A,et al. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity:an in vivo and in vitro study[J]. J Physiol Biochem,2014,70(1):225-237.
[55] PINGILI R,VEMULAPALLI S,MULLAPUDI S S,et al. Pharmacokinetic interaction study between flavanones(hesperetin,naringenin) and rasagiline mesylate in Wistar rats[J]. Drug Dev Ind Pharm,2016,42(7):1110-1117.
[56] ZHANG F Y,DU G J,ZHANG L,et al. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein[J]. Pharm Res,2009,26(4):914-925.
[57] QIU J X,ZHOU Z W,HE Z X,et al. Estimation of the binding modes with important human cytochrome P450 enzymes,drug interaction potential,pharmacokinetics,and hepatotoxicity of ginger components using molecular docking,computational,and pharmacokinetic modeling studies[J]. Drug Des Devel Ther,2015,9:841-866.
[58] MA Y L,ZHAO F,YIN J T,et al. Two approaches for evaluating the effects of galangin on the activities and mRNA expression of seven CYP450[J]. Molecules,2019,24(6):1171.
[59] LOU D,BAO S S,LI Y H,et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet,2019,44(5):611-618.
[60] LI Y,NING J,WANG Y,et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship(QSAR) analysis for predicting potential effects[J]. Toxicol Lett,2018,294:27-36.
[61] WEI Y,ZHOU S,HAO T,et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin[J]. Eur J Pharm Sci,2019,129:21-30.
[62] CHOI S J,SHIN S C,CHOI J S. Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats:possible role of CYP3A4 and P-glycoprotein inhibition by myricetin[J]. Arch Pharm Res,2011,34(2):309- 315.
[63] ZANDEN J V,MUL A D,WORTELBOER H M,et al. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin[J]. Biochem Pharmacol,2005,69(11):1657-1665. [64] YU C P,WU P P,HOU Y C,et al. Quercetin and rutin reduced the bioavailability of cyclosporine from neoral,an immunosuppressant,through activating P-glycoprotein and CYP3A4[J]. J Agric Food Chem,2011,59(9):4644- 4648.
[65] MOHANA S,GANESAN M,PRASAD N R,et al. Flavonoids modulate multidrug resistance through wnt signa- ling in P-glycoprotein overexpressing cell lines[J]. BMC Cancer,2018,18(1):1168.
[66] KUHLMANN O,HOFMANN H S,M?LLER S P,et al. Pharmacokinetics of idarubicin in the isolated perfused rat lung:effect of cinchonine and rutin[J]. Anticancer Drugs,2003,14(6):411-416.
[67] NGUYEN H,ZHANG S,MORRIS M E.Effect of flavonoids on MRP1-mediated transport in Panc-1 cells[J]. J Pharm Sci,2003,92(2):250-257.
[68] WONG C C,BOTTING N P,ORFILA C,et al. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1(OAT1/SLC22A6)[J]. Biochem Pharmacol,2011,81(7):942-949.
[69] OGURA J,KOIZUMI T,SEGAWA M,et al. Quercetin-3-rhamnoglucoside(rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1[J]. Biopharm Drug Dispos,2014,35(3):173-182.
[70] KIM S J,KIM S J,HONG M,et al. Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9[J]. Xenobiotica,2016,46(10):857-861.
[71] HE W,WU J J,NING J,et al. Inhibition of human cytochrome P450 enzymes by licochalcone A,a naturally occurring constituent of licorice[J]. Toxicol In Vitro,2015,29(7):1569-1576.
[72] WANG X,ZHANG H,CHEN L,et al. Liquorice,a unique “guide drug” of traditional Chinese medicine:a review of its role in drug interactions[J]. J Ethnopharmacol,2013,150(3):781-790.
[73] GUO B,FAN X R,FANG Z Z,et al. Deglycosylation of liquiritin strongly enhances its inhibitory potential towards UDP-glucuronosyltransferase(UGT) isoforms[J]. Phytother Res,2013,27(8):1232-1236.
[74] HE Y,CI X,XIE Y,et al. Potential detoxification effect of active ingredients in liquorice by upregulating efflux transporter[J]. Phytomedicine,2019,56:175-182.
[75] SATOH T,FUJISAWA H,NAKAMURA A,et al. Inhibitory effects of eight green tea catechins on cytochrome P450 1A2,2C9,2D6,and 3A4 activities[J]. J Pharm Pharm Sci,2016,19(2):188-197.
[76] RRONIS M J. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity[J]. Drug Metab Rev,2016,48(3):331-341. [77] KOPE?N?-ZAPLETALOV? M,KRASULOV? K,ANZENBACHER P,et al. Interaction of isoflavonoids with human liver microsomal cytochromes P450:inhibition of CYP enzyme activities[J]. Xenobiotica,2017,47(4):324-331.
[78] MITRA P S,BASU N K,OWENS I S. Src supports UDP- glucuronosyltransferase-2B7 detoxification of catechol estrogens associated with breast cancer[J]. Biochem Biophys Res Commun,2009,382(4):651-656.
[79] CAI S A,HOU N,ZHAO G J,et al. Nrf2 is a key regulator on puerarin preventing cardiac fibrosis and upregula- ting metabolic enzymes UGT1A1 in rats[J]. Front Pharmacol,2018,9:540.
[80] GUO J,WANG Q,ZHANG Y,et al. Functional daidzein enhances the anticancer effect of topotecan and reverses BCRP-mediated drug resistance in breast cancer[J]. Pharmacol Res,2019,147:104387.
[81] MAHER H M,ALZOMAN N Z,SHEHATA S M,et al. Comparative pharmacokinetic profiles of selected irrever- sible tyrosine kinase inhibitors,neratinib and pelitinib,with apigenin in rat plasma by UPLC-MS/MS[J]. J Pharm Biomed Anal,2017,137:258-267.
[82] ZHAN Y Y,LIANG B Q,GU E M,et al. Inhibitory effect of apigenin onpharmacokinetics of venlafaxine in vivo and in vitro[J]. Pharmacology,2015,96(3/4):118-123.
[83] EUMKEB G,CHUKRATHOK S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant enterobacter cloacae[J]. Phytomedicine,2013,20(3/4):262-269.
[84] NAVARRO-N??EZ L,LOZANO M L,PALOMO M,et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway[J]. J Agric Food Chem,2008,56(9):2970-2976.
[85] 王篤军,王硕,严峰,等.欧前胡素和异欧前胡素对小鼠肝CYP450的影响[J].中成药,2017,39(1):14-20.
[86] 曹艳,钟玉环,原梅,等.欧前胡素和异欧前胡素对人和大鼠肝微粒体细胞色素P450酶活性的抑制作用[J].中国中药杂志,2013,38(8):1237-1241.
[87] LIAO Z G,TANG T,GUAN X J,et al. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport[J]. Molecules,2016,21(12):1606.
(收稿日期:2020-12-21 修回日期:2021-08-12)
(编辑:胡晓霖)
DOI 10.6039/j.issn.1001-0408.2021.18.18
摘 要 目的:综述代谢酶和转运体介导的药食同源中药中黄酮类成分对其他药物的影响,为临床合理用药提供参考。方法:介绍药食同源中药中常见的黄酮类成分,总结代谢酶和转运体对药物在人体内吸收和代谢过程中的作用,并对代谢酶和转运体介导的药食同源中药中常见黄酮类成分对其他药物的影响进行综述。结果与结论:药食同源中药中的槲皮素、山柰酚、木犀草素、芦丁、甘草苷、柚皮苷、染料木素等黄酮类成分可以提高主要由细胞色素P450代谢和P-糖蛋白、乳腺癌耐药相关蛋白转运的药物(如小分子激酶抑制剂、抗肿瘤药物、质子泵抑制剂等)的药-时曲线下面积和最大血药浓度;槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黄酮类成分对葡萄糖醛酸转移酶家族和有机阴离子转运体、有机阳离子转运体具有一定的抑制作用,可以减少许多药物类底物如抗病毒药物(如阿昔洛韦、阿德福韦)等的代谢,降低其清除率,提高其生物利用度。应充分重视药食同源中药对代谢酶和转运体的影响,同时加强药食同源中药和其他药物相互作用的体内研究(尤其是临床研究)及药效学研究。
关键词 药食同源;黄酮类成分;药物相互作用;代谢酶;转运体
药食同源是指在中医药学研究中,药物与食物之间并无绝对的分界线,如唐初杨上善所撰《黄帝内经太素》一书中写道:“空腹食之为食物,患者食之为药物”[1],就反映出了“药食同源”的思想。药食同源的中药在日常生活中应用广泛,如决明子、百合、肉豆蔻、肉桂、罗汉果等,既可药用,也可食用。近年来,有关药动学改变引起的药物相互作用和不良反应屡有报道[2]。药物相互作用的靶点主要包括代谢酶和转运体,它们均为机体处置药物的关键蛋白,且大部分药物的体内处置过程均需要它们的共同参与[2]。黄酮类化合物对代谢酶和转运体有较强的调节作用[3],因此应重视富含黄酮类成分的药食同源中药对其他药物药动学的潜在影响。基于此,笔者从代谢酶和转运体角度,综述了药食同源中药中黄酮类成分对其他药物的影响,以期从药动学角度为临床合理使用药食同源中药提供参考。
1 药食同源中药中的黄酮类成分
黄酮类化合物在植物中广泛存在,以芹菜素、木犀草素为代表的黄酮类成分在药食同源中药中分布广泛且含量较高[3](表1)。这些黄酮类成分对于诸多代谢酶和转运体有不同程度的调控作用,需要关注这类成分对同时服用的其他药物体内过程的影响。
2 代谢酶和转运体对药物在人体内吸收和代谢的影响
2.1 代謝酶
药物在人体内的代谢主要分为以氧化、还原及水解反应为主的Ⅰ相代谢和以结合反应为主的Ⅱ相代谢。细胞色素P450(CYPs)是参与药物Ⅰ相代谢的主要酶系,目前已被证实人体中有十多个CYPs亚型酶参与了药物代谢,其中CYP3A4、CYP2C19和CYP2C9对药物代谢的影响较大[26]。Ⅱ相代谢的研究主要针对葡萄糖醛酸转移酶(UGTs)和磺酸基转移酶(SULTs)[26-27],二者的底物分布广泛,包含了来自外源和内源的一系列结构不同的亲脂分子,其中外源性底物包括药物、环境毒素和饮食中消耗的生物活性化合物等[27-28]。药食同源中药中的黄酮类成分可能通过调节CYPs、UGTs和SULTs而影响药物的体内代谢过程。
2.2 转运体
转运体按照转运方式被分为以P-糖蛋白(P-gp)、多药耐药相关蛋白(MRP)、乳腺癌耐药相关蛋白(BCRP)为代表的原发性主动转运型和以有机阴离子转运多肽(OATP)、有机阴离子转运体(OAT)、有机阳离子转运体(OCT)为代表的继发性主动转运型[29]。其中,P-gp是三磷酸腺苷结合盒转运蛋白超家族中的一员,在肝、肾、胰腺等组织和血脑屏障中广泛表达,其底物包含大量结构和功能不同的药物,如质子泵抑制剂、抗病毒药物、血管紧张素Ⅱ受体拮抗剂、酪氨酸激酶抑制剂、大环内酯类抗菌药物、免疫抑制剂、抗凝血药物、抗癫痫药物等均是P-gp的高敏感性底物[29]。P-gp可以将药物从细胞内排出,降低药物在体内的生物利用度,被认为是多药耐药问题的主要原因之一[29]。另外,MRP也是多药耐药的形成机制之一,在多种肿瘤中都有表达,其主要参与细胞内外多种复合物的转运,调整细胞内物质的分布;其中MRP1和MRP2是人体内表达水平较高的两类蛋白,也是对药物相互作用影响较大的两类蛋白[29]。BCRP是从真核细胞中发现的一类较为重要的多药耐药蛋白,抗病毒药物、他汀类药物、酪氨酸激酶抑制剂和大环内酯类抗菌药物均是BCRP的高敏感代表性底物,而BCRP的活性增强会直接导致这些药物在人体内的生物利用度下降[29]。OATP具有广泛的底物特异性,许多药物(如他汀类药物、血管紧张素转换酶受体抑制剂、大环内酯类抗菌药物和酪氨酸激酶抑制剂等)均是OATP的高亲和力底物[30]。OAT对药物(抗菌药物、抗病毒药物、利尿剂、非甾体抗炎药等)、毒素(汞、马兜铃酸等)和营养素(维生素、类黄酮等)在体内的转运过程有着较大的影响[31]。OCT主要负责转运亲水性、低分子量的有机阳离子,其典型底物有二甲双胍、奥沙利铂等,相应抑制剂有奎宁、丙吡胺等[32]。OATP、OAT和OCT可以介导多种化合物、代谢物等的吸收,其活性的增强可以加速这些药物底物的体内清除过程,提升部分药物的清除率,其中OATP和OAT对药物相互作用的影响也是研究者重点关注的领域。
3 代谢酶和转运体介导的药食同源中药中常见的黄酮类成分对其他药物的影响
3.1 槲皮素
槲皮素可抑制大鼠体内CYPs酶活性,减少阿霉素、溴隐亭、吡格列酮、依托泊苷、环孢素等药物的代谢,提高这些药物的生物利用度[33]。低浓度槲皮素可增强Caco-2细胞葡萄糖醛酸酶活性[34]。该成分也是人体肝脏中SULT1A1的有效抑制剂[35]。除代谢酶外,槲皮素对大部分转运蛋白均表现出较强的抑制作用。例如其可通过抑制P-gp的表达来增大P-gp底物(如长春新碱、紫杉醇、阿霉素、奎尼丁、地高辛、环孢素等)的药-时曲线下面积(AUC)[33];还可抑制其他耐药转运蛋白(如BCRP、MRP等)的表达,增加部分合用药物(如磺胺吡啶等)的AUC和最大血药浓度(cmax),抑制HEK293细胞中OATP1A2和OATP2B1的转运活性,从而降低此类药物的体内清除率[33]。此外,其能以剂量依赖的方式降低抗逆转录病毒药物阿德福韦介导的细胞毒性,表明其对OAT1有一定程度的抑制作用[36],在药物联用过程中应加以注意。 3.2 芹菜素
芹菜素可抑制CYP3A4的活性,增加大鼠体内小分子激酶抑制剂(如奈拉替尼、培米替尼等)和文拉法辛的AUC和cmax[37]。Caco-2细胞模型研究结果表明,芹菜素可诱导UGT1A1的表达[38]。除了对代谢酶的作用外,芹菜素还可以抑制P-gp和BCRP的表达,减少抗肿瘤药物(如紫杉醇、阿霉素)的外排[39-40];抑制OAT1活性,减少抗病毒药物(如阿昔洛韦、阿德福韦)的代谢,从而提高这些药物的AUC和cmax[36]。
3.3 山柰酚
山柰酚可以抑制大鼠体内CYP3A4和P-gp的表达,提高硝苯地平、氨氯地平、依托泊苷、他莫昔芬、咪达唑仑和奎尼丁的AUC和cmax[41-44]。在转运体方面,山柰酚可以抑制P-gp、BCRP的表达,减少抗肿瘤药物(如他莫昔芬、紫杉醇、依托泊苷、阿霉素、替莫唑胺、喜树碱、拓扑替康等)、抗逆转录病毒药物(如利托那韦、沙奎那韦、阿德福韦等)和钙离子通道阻滞剂(如硝苯地平、氨氯地平等)的外排,提高这些药物的AUC[45-47]。同时,山柰酚还可以抑制OATP1B1、OATP1A2的表达,从而减少非索非那定、阿托伐他汀和甲氨蝶呤等药物的代谢,降低其清除率,提高其生物利用度[48-49]。
3.4 木犀草素
木犀草素可以抑制人肝微粒体中CYP3A4、CYP2C8、CYP2C9的活性,还可抑制HEK293细胞中OATP1B1的活性,从而减少甲氨蝶呤的代謝[49-50];大鼠实验研究也证实,合用甲氨蝶呤和木犀草素可以增加甲氨蝶呤的AUC0-t[49,51]。
3.5 柚皮素
柚皮素可以抑制CYP1A2、CYP3A4的活性,减少咪达唑仑、雷沙吉兰、辛伐他汀、紫杉醇在大鼠体内的AUC和cmax[52-54]。除代谢酶外,柚皮素可通过抑制大鼠体内P-gp的表达来减少非洛地平、雷沙吉兰和阿霉素的外排,提高这些药物的生物利用度[53,55-56]。
3.6 高良姜素
分子对接研究表明,高良姜素对CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4均表现出较强的亲和性[57]。大鼠实验研究也证实,高良姜素可以显著降低CYP1A2和CYP2B3探针药物(非那西丁、安非他酮)的AUC0-∞和cmax[57-58]。
3.7 杨梅素
体外研究表明,杨梅素是CYP2C9和CYP2D6的非竞争性抑制剂,是CYP2B1的竞争性抑制剂,也是CYP3A2、CYP2C11和CYP2D1的抑制剂[59]。大鼠体内研究表明,杨梅素可抑制CYP2C9和CYP3A4的表达,从而显著降低非那西丁的AUC和cmax[60]。在转运体方面,杨梅素可抑制大鼠体内P-gp的表达,从而减少抗肿瘤药物(如多西紫杉醇、阿霉素)的外排,增加药物的AUC和cmax[61-62]。此外,杨梅素还可以逆转体外细胞中MRP1和MRP2介导的长春新碱耐药性,从而增加长春新碱的吸收[63]。
3.8 芦丁
芦丁可以通过抑制CYP3A4的活性来增加大鼠体内环孢素的AUC和cmax[64]。除CYPs外,芦丁对大部分药物转运蛋白均有不同程度的调控作用。细胞研究表明,芦丁可以下调P-gp的表达,从而显著降低阿霉素、紫杉醇、格列本脲、伊达比星的耐药性[65-66]。此外,芦丁可以抑制BCRP的活性,从而增加双氯芬酸的生物利用度[67];抑制OATP1A2和OATP2B1的转运活性,从而减少其对非索非那定和他汀类药物的代谢[68-69]。
3.9 甘草苷
甘草苷对CYPs的影响尚未形成统一的结论。部分研究发现,甘草苷可以抑制CYP1A1和CYP2C9的活性[70];但也有另外的研究发现,甘草苷对CYPs具有一定的诱导作用[71-72]。除CYPs以外,甘草苷及其苷元对多种UGTs亚型酶(如UGT1A1、 UGT1A9等)介导的葡萄糖醛酸化反应均有竞争性抑制作用[73],这可能是甘草苷与药物相互作用的机制之一。此外,甘草苷还可以上调Caco-2细胞中多种外排蛋白的表达,可能加速药物的外排,降低药物的生物利用度[74]。
3.10 表儿茶素
表儿茶素可以抑制大鼠体内CYP2C9和CYP3A4的表达,从而提高诸多药物(如对乙酰氨基酚、尼卡地平、维拉帕米、地尔硫 、辛伐他汀、非那西丁、紫杉醇等)的AUC和cmax[75]。此外,表儿茶素还可能通过抑制CYP3A4的活性来增加健康志愿者体内丁螺环酮的AUC[75]。
3.11 染料木素、葛根素、大豆苷
染料木素、葛根素、大豆苷对主要的CYPs亚型酶(如CYP2B6、CYP2C9、CYP3A4、CYP1A1)具有显著的抑制作用,从而减少非那西丁、安非他酮、奥美拉唑、紫杉醇、他林洛尔等药物的代谢,并有可能增加这些药物的血药浓度[76-77]。体外细胞实验表明,染料木素对UGT2B7有较强的抑制作用[78];葛根素可以上调大鼠心脏成纤维细胞中UGT1A1的表达[79];大豆苷和染料木素对肿瘤细胞中P-gp和BCRP的活性均表现出较强的逆转作用,可以抑制肿瘤细胞外排蛋白的表达,有利于缓解抗肿瘤药物的耐药性[47,80]。
代谢酶、转运体介导的药食同源中药中常见黄酮类成分对其他药物的影响分别见表2、表3。
4 讨论
本文对代谢酶和转运体介导的药食同源中药中常见的黄酮类成分对其他药物的影响进行了综述。结果表明,黄酮类成分在药食同源中药中含量丰富;其中的槲皮素、山柰酚、木犀草素、芦丁、甘草苷、柚皮苷、染料木素等黄酮类成分可以提高主要由CYPs代谢和P-gp、BCRP、MRP转运的药物(如小分子激酶抑制剂、抗肿瘤药物、质子泵抑制剂等)的AUC和cmax,槲皮素、山柰酚、芹菜素、柚皮素、染料木素等黄酮类成分对UGTs家族和OAT、OATP具有一定的调控作用。这提示在使用抗肿瘤药物、小分子激酶抑制剂、质子泵抑制剂等药物时,可以适当选择一些安全性较高的药食同源中药配伍使用,以提高临床疗效;但另一方面,针对部分治疗窗狭窄的药物,应尽量避免其与药食同源中药一起使用,以免使前述药物的cmax超出安全范围。 在进行文献研究的过程中,笔者发现药食同源中药与其他药物相互作用的研究虽然已有较大的发展,但仍存在一些不足:(1)目前的药物相互作用研究仍以动物实验和体外实验为主,尚需加强体内研究(尤其是临床研究);(2)目前的研究大多以药动学为核心展开,缺乏将药动学与药效学结合的研究;(3)中药对转运体和代谢酶影响的研究众多,但缺少转运体和代谢酶对中药药动学影响的研究。这些不足之处是中药与其他药物相互作用研究未来需要努力的方向。
参考文献
[ 1 ] 杨上善.黄帝内经太素[M].李云,点校.北京:学苑出版社,2007:9.
[ 2 ] 周燕,武新安,邓毅.药物转运体与代谢酶间的协作关系对肠肝药物处置的影响[J].药学学报,2020,55(8):1762-1767.
[ 3 ] HOSTETLER G L,RALSTON R A,SCHWARTZ S J. Flavones:food sources,bioavailability,metabolism,and bioactivity[J]. Adv Nutr,2017,8(3):423-435.
[ 4 ] BAI L,LI X,HE L,et al. Antidiabetic potential of flavonoids from traditional Chinese medicine:a review[J]. Am J Chin Med,2019,47(5):933-957.
[ 5 ] 赵永艳,胡瀚文,彭腾,等.佛手的化学成分药理作用及开发应用研究进展[J].时珍国医国药,2018,29(11):2734- 2736.
[ 6 ] 张东,邬国栋.沙棘黄酮的化学成分及药理作用研究进展[J].中国药房,2019,30(9):1292-1296.
[ 7 ] 吴龙火,张剑.枳椇子的化学成分研究[J].时珍国医国药,2013,24(5):1028-1029.
[ 8 ] 尹伟,宋祖荣,刘金旗,等.香橼化学成分研究[J].中药材,2015,38(10):2091-2094.
[ 9 ] 刘均玉.橘皮的化学成分与黄酮类化合物的提取、纯化研究[D].福州:福建师范大学,2009.
[10] SHAO Y,SUN Y,LI D,et al. Chrysanthemum indicum L.:a comprehensive review of its botany,phytochemistry and pharmacology[J]. Am J Chin Med,2020,48(4):871- 897.
[11] 徐凌玉,李振麟,蔡芷辰,等.薄荷化学成分的研究[J].中草药,2013,44(20):2798-2802.
[12] 王艳慧.化橘红的研究进展[J].世界科学技术(中医药现代化),2017,19(6):1076-1082.
[13] MARTINEZ M,POIRRIER P,CHAMY R,et al. Taraxacum officinale and related species:an ethnopharmacolo- gical review and its potential as a commercial medicinal plant[J]. J Ethnopharmacol,2015,169:244-262.
[14] PASTORINO G,CORNARA L,SOARES S,et al. Liquorice(Glycyrrhiza glabra):a phytochemical and pharmacological review[J]. Phytother Res,2018,32(12):2323-2339.
[15] 劉磊磊,肖卓炳.野菊花的化学成分研究[J].中草药,2018,49(22):5254-5258.
[16] 刘琳,程伟.槐花化学成分及现代药理研究新进展[J].中医药信息,2019,36(4):125-128.
[17] BASRI A M,TAHA H,AHAMAD N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation[J]. Pharmacogn Rev,2017,11(21):43-56.
[18] SOLEIMANI V,SAHEBKAR A,HOSSEINZADEH H. Turmeric (Curcuma longa) and its major constituent(cur- cumin) as nontoxic and safe substances:review[J]. Phytother Res,2018,32(6):985-995.
[19] 吴华东.山柰化学成分的研究[D].武汉:华中科技大学,2016.
[20] 李昕,潘俊娴,陈士国,等.葛根化学成分及药理作用研究进展[J].中国食品学报,2017,17(9):189-195.
[21] FU J,WANG Z,HUANG L,et al. Review of the botanical characteristics,phytochemistry,and pharmacology of Astragalus membranaceus(Huangqi)[J]. Phytother Res,2014,28(9):1275-1283. [22] 陳俏,刘晓月,石亚囡,等.赤小豆化学成分的研究[J].中成药,2017,39(7):1419-1422.
[23] 袁珊琴,于能江,赵毅民,等.淡豆豉中的化学成分[J].中药材,2008,31(8):1172-1174.
[24] 黄艳,郑金燕,杨刚劲,等.苦丁茶冬青根的化学成分研究[J].中草药,2015,46(16):2371-2376.
[25] 侯晋军,韩利文,杨官娥,等.罗布麻叶化学成分和药理活性研究进展[J].中草药,2006,37(10):1603-1605.
[26] MANIKANDAN P,NAGINI S. Cytochrome P450 structure,function and clinical significance:a review[J]. Curr Drug Targets,2018,19(1):38-54.
[27] MEECH R,HU D G,MCKINNON R A,et al. The UDP- glycosyltransferase(UGT) superfamily:new members,new functions,and novel paradigms[J]. Physiol Rev,2019,99(2):1153-1222.
[28] SUIKO M,KUROGI K,HASHIGUCHI T,et al. Updated perspectives on the cytosolic sulfotransferases(SULTs) and SULT-mediated sulfation[J]. Biosci Biotechnol Biochem,2017,81(1):63-72.
[29] FDA. Drug development and drug interactions:table substrates inhibitors and inducers[EB/OL].(2020-10-03)[2020- 12-14].https//www.fda.gov/drugs/drug-interactions-labe- ling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
[30] OSWALD S. Organic anion transporting polypeptide(OATP) transporter expression,localization and function in the human intestine[J]. Pharmacol Ther,2019,195:39-53.
[31] NIGAM S K,BUSH K T,MARTOVETSKY G,et al. The organic anion transporter(OAT) family:a systems bio- logy perspective[J]. Physiol Rev,2015,95(1):83-123.
[32] KOPESELL H. Organic cation transporters in health and disease[J]. Pharmacol Rev,2020,72(1):253-319.
[33] MOHOS V,FLISZ?R-NY?L E,UNGV?RI O,et al. Inhibitory effects of quercetin and its main methyl,sulfate,and glucuronic acid conjugates on cytochrome P450 enzymes,and on OATP,BCRP and MRP2 transporters[J]. Nutrients,2020,12(8):2306.
[34] GALIJATOVIC A,WALLE U K,WALLE T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells[J]. Pharm Res,2000,17(1):21-26.
[35] PACIFICI G M. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals:a review of the literature[J]. Int J Clin Pharmacol Ther,2004,42(9):488-495.
[36] WU T,LI H,CHEN J,et al. Apigenin,a novel candidate involving herb-drug interaction(HDI),interacts with organic anion transporter 1(OAT1)[J]. Pharmacol Rep,2017,69(6):1254-1262.
[37] CHEN Y,JIA X,CHEN J,et al. The pharmacokinetics of raloxifene and its interaction with apigenin in rat[J]. Molecules,2010,15(11):8478-8487.
[38] SVEHL?KOV? V,WANG S,JAKUB?KOV? J,et al. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in Caco-2 cells[J]. Carcinogenesis,2004,25(9):1629-1637. [39] KUMAR K K,PRIYANKA L,GNANANATH K,et al. Pharmacokinetic drug interactions between apigenin,rutin and paclitaxel mediated by P-glycoprotein in rats[J]. Eur J Drug Metab Pharmacokinet,2015,40(3):267-276.
[40] FAN X,BAI J,ZHAO S,et al. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein(BCRP):from library screening to biological evaluation to structure-activity relationship[J]. Toxicol In Vitro,2019,61:104642.
[41] PARK J W,CHOI J S. Role of kaempferol to increase bioavailability and pharmacokinetics of nifedipine in rats[J]. Chin J Nat Med,2019,17(9):690-697.
[42] LI C,LI X,CHOI J S. Enhanced bioavailability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats[J]. Arch Pharm Res,2009,32(1):133-138.
[43] PIAO Y,SHIN S C,CHOI J S. Effects of oral kaempferol on the pharmacokinetics of tamoxifen and one of its metabolites,4-hydroxytamoxifen,after oral administration of tamoxifen to rats[J]. Biopharm Drug Dispos,2008,29(4):245-249.
[44] HA H R,CHEN J,LEUENBERGER P M,et al. In vitro inhibition of midazolam and quinidine metabolism by flavonoids[J]. Eur J Clin Pharmacol,1995,48(5):367-371.
[45] PATEL J,BUDDHA B,DEY S,et al. In vitro interaction of the HIV protease inhibitor ritonavir with herbal consti- tuents:changes in P-gp and CYP3A4 activity[J]. Am J Ther,2004,11(4):262-277.
[46] LIMTRAKUL P,KHANTAMAT O,PINTHA K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin[J]. J Chemother,2005,17(1):86-95.
[47] IMAI Y,TSUKAHARA S,ASADA S,et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance[J]. Cancer Res,2004,64(12):4346-4352.
[48] MANDERY K,BUJOK K,SCHMIDT I,et al. Influence of the flavonoids apigenin,kaempferol,and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1[J]. Biochem Pharmacol,2010,80(11):1746-1753.
[49] FAN X,BAI J,HU M,et al. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects
[J]. Toxicology,2020,437:152445.
[50] QUINTIERI L,PALATINI P,NASSI A,et al. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP3A4 and CYP3A5 enzymes[J]. Biochem Pharmacol,2008,75(6):1426-1437.
[51] AN G,WANG X,MORRIS M E. Flavonoids are inhibitors of human organic anion transporter 1(OAT1)-media- ted transport[J]. Drug Metab Dispos,2014,42(9):1357- 1366. [52] LU W J,FERLITO V,XU C,et al. Enantiomers of naringenin as pleiotropic,stereoselective inhibitors of cytochrome P450 isoforms[J]. Chirality,2011,23(10):891- 896.
[53] SANDEEP M S,SRIDHAR V,PUNEETH Y,et al. Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro[J]. Drug Dev Ind Pharm,2014,40(10):1371-1377.
[54] MOTAWI T K,TELEB Z A,EL-BOGHDADY N A,et al. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity:an in vivo and in vitro study[J]. J Physiol Biochem,2014,70(1):225-237.
[55] PINGILI R,VEMULAPALLI S,MULLAPUDI S S,et al. Pharmacokinetic interaction study between flavanones(hesperetin,naringenin) and rasagiline mesylate in Wistar rats[J]. Drug Dev Ind Pharm,2016,42(7):1110-1117.
[56] ZHANG F Y,DU G J,ZHANG L,et al. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein[J]. Pharm Res,2009,26(4):914-925.
[57] QIU J X,ZHOU Z W,HE Z X,et al. Estimation of the binding modes with important human cytochrome P450 enzymes,drug interaction potential,pharmacokinetics,and hepatotoxicity of ginger components using molecular docking,computational,and pharmacokinetic modeling studies[J]. Drug Des Devel Ther,2015,9:841-866.
[58] MA Y L,ZHAO F,YIN J T,et al. Two approaches for evaluating the effects of galangin on the activities and mRNA expression of seven CYP450[J]. Molecules,2019,24(6):1171.
[59] LOU D,BAO S S,LI Y H,et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet,2019,44(5):611-618.
[60] LI Y,NING J,WANG Y,et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship(QSAR) analysis for predicting potential effects[J]. Toxicol Lett,2018,294:27-36.
[61] WEI Y,ZHOU S,HAO T,et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin[J]. Eur J Pharm Sci,2019,129:21-30.
[62] CHOI S J,SHIN S C,CHOI J S. Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats:possible role of CYP3A4 and P-glycoprotein inhibition by myricetin[J]. Arch Pharm Res,2011,34(2):309- 315.
[63] ZANDEN J V,MUL A D,WORTELBOER H M,et al. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin[J]. Biochem Pharmacol,2005,69(11):1657-1665. [64] YU C P,WU P P,HOU Y C,et al. Quercetin and rutin reduced the bioavailability of cyclosporine from neoral,an immunosuppressant,through activating P-glycoprotein and CYP3A4[J]. J Agric Food Chem,2011,59(9):4644- 4648.
[65] MOHANA S,GANESAN M,PRASAD N R,et al. Flavonoids modulate multidrug resistance through wnt signa- ling in P-glycoprotein overexpressing cell lines[J]. BMC Cancer,2018,18(1):1168.
[66] KUHLMANN O,HOFMANN H S,M?LLER S P,et al. Pharmacokinetics of idarubicin in the isolated perfused rat lung:effect of cinchonine and rutin[J]. Anticancer Drugs,2003,14(6):411-416.
[67] NGUYEN H,ZHANG S,MORRIS M E.Effect of flavonoids on MRP1-mediated transport in Panc-1 cells[J]. J Pharm Sci,2003,92(2):250-257.
[68] WONG C C,BOTTING N P,ORFILA C,et al. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1(OAT1/SLC22A6)[J]. Biochem Pharmacol,2011,81(7):942-949.
[69] OGURA J,KOIZUMI T,SEGAWA M,et al. Quercetin-3-rhamnoglucoside(rutin) stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1[J]. Biopharm Drug Dispos,2014,35(3):173-182.
[70] KIM S J,KIM S J,HONG M,et al. Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9[J]. Xenobiotica,2016,46(10):857-861.
[71] HE W,WU J J,NING J,et al. Inhibition of human cytochrome P450 enzymes by licochalcone A,a naturally occurring constituent of licorice[J]. Toxicol In Vitro,2015,29(7):1569-1576.
[72] WANG X,ZHANG H,CHEN L,et al. Liquorice,a unique “guide drug” of traditional Chinese medicine:a review of its role in drug interactions[J]. J Ethnopharmacol,2013,150(3):781-790.
[73] GUO B,FAN X R,FANG Z Z,et al. Deglycosylation of liquiritin strongly enhances its inhibitory potential towards UDP-glucuronosyltransferase(UGT) isoforms[J]. Phytother Res,2013,27(8):1232-1236.
[74] HE Y,CI X,XIE Y,et al. Potential detoxification effect of active ingredients in liquorice by upregulating efflux transporter[J]. Phytomedicine,2019,56:175-182.
[75] SATOH T,FUJISAWA H,NAKAMURA A,et al. Inhibitory effects of eight green tea catechins on cytochrome P450 1A2,2C9,2D6,and 3A4 activities[J]. J Pharm Pharm Sci,2016,19(2):188-197.
[76] RRONIS M J. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity[J]. Drug Metab Rev,2016,48(3):331-341. [77] KOPE?N?-ZAPLETALOV? M,KRASULOV? K,ANZENBACHER P,et al. Interaction of isoflavonoids with human liver microsomal cytochromes P450:inhibition of CYP enzyme activities[J]. Xenobiotica,2017,47(4):324-331.
[78] MITRA P S,BASU N K,OWENS I S. Src supports UDP- glucuronosyltransferase-2B7 detoxification of catechol estrogens associated with breast cancer[J]. Biochem Biophys Res Commun,2009,382(4):651-656.
[79] CAI S A,HOU N,ZHAO G J,et al. Nrf2 is a key regulator on puerarin preventing cardiac fibrosis and upregula- ting metabolic enzymes UGT1A1 in rats[J]. Front Pharmacol,2018,9:540.
[80] GUO J,WANG Q,ZHANG Y,et al. Functional daidzein enhances the anticancer effect of topotecan and reverses BCRP-mediated drug resistance in breast cancer[J]. Pharmacol Res,2019,147:104387.
[81] MAHER H M,ALZOMAN N Z,SHEHATA S M,et al. Comparative pharmacokinetic profiles of selected irrever- sible tyrosine kinase inhibitors,neratinib and pelitinib,with apigenin in rat plasma by UPLC-MS/MS[J]. J Pharm Biomed Anal,2017,137:258-267.
[82] ZHAN Y Y,LIANG B Q,GU E M,et al. Inhibitory effect of apigenin onpharmacokinetics of venlafaxine in vivo and in vitro[J]. Pharmacology,2015,96(3/4):118-123.
[83] EUMKEB G,CHUKRATHOK S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant enterobacter cloacae[J]. Phytomedicine,2013,20(3/4):262-269.
[84] NAVARRO-N??EZ L,LOZANO M L,PALOMO M,et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway[J]. J Agric Food Chem,2008,56(9):2970-2976.
[85] 王篤军,王硕,严峰,等.欧前胡素和异欧前胡素对小鼠肝CYP450的影响[J].中成药,2017,39(1):14-20.
[86] 曹艳,钟玉环,原梅,等.欧前胡素和异欧前胡素对人和大鼠肝微粒体细胞色素P450酶活性的抑制作用[J].中国中药杂志,2013,38(8):1237-1241.
[87] LIAO Z G,TANG T,GUAN X J,et al. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport[J]. Molecules,2016,21(12):1606.
(收稿日期:2020-12-21 修回日期:2021-08-12)
(编辑:胡晓霖)