论文部分内容阅读
微阵列数据集行少列多的特征,使得传统基于列枚举空间的算法应用于其中进行频繁闭合模式挖掘时其复杂性迅速增长。基于行枚举的CARPENTER算法较好解决了该问题。但CARPENTER算法使用映射转置表(TT)来完成频繁闭合模式完全集的挖掘效率不高。该文在CARPENTER算法基础上,提出LG-tree数据结构,并基于此结构提出挖掘频繁闭合模式的新算法MFCPLG。真实数据集的实验表明,MFCPLG算法的时间性能优于CARPENTER算法。