论文部分内容阅读
预测隧道工程中TBM掘进速度,主要有完全经验的、半理论半经验的模型和人工智能等方法,所用参数均为确定性的,未考虑参数存在的随机性,故导致预测结果的不准确性。基于此,提出了Monte Carlo-BP神经网络TBM掘进速度预测模型,着重考虑了一些重要输入参数的随机性,其中输入参数重要性的大小通过粗糙集进行计算排序。采用Monte Carlo产生随机数时,由于参量的样本数据的有限,分布函数均采用阶梯形经验分布函数。如果采用的数据是来自不同类型的TBM,则应当考虑机器性能参数,并重新对参数重要性进行排序。实例计