论文部分内容阅读
通过波段比和阈值相结合的方法,分别提取了玉米籽粒全表面结构和胚结构区域的1 000~2 500nm近红外高光谱信息,研究了玉米籽粒水分含量与胚结构区域光谱关系,同时采用竞争性自适应重加权变量选择算法(CARS)、遗传算法(GA)、连续投影算法(SPA)筛选特征波段,建立并比较偏最小二乘回归(PLS)模型对水分含量的预测效果。结果显示,玉米籽粒水分含量与胚结构区域光谱关系显著,随着水分含量的增加,光谱反射值逐渐降低。预测模型结果表明,基于玉米籽粒胚结构区域光谱信息所建立的CARSPLS,GA-PLS和SPA-PLS回归模型预测相关系数Rp分别为0.931 2,0.917 6和0.922 7,预测均方根误差(RMSEP)分别为0.315 3,0.336 9和0.336 6,所选取的特征波段数量分别为9,14和6,较基于全表面光谱信息所建模型的特征波段数量分别少了49,12和24个,且预测效果与采用全表面光谱信息无显著差别,SPA-PLS算法为基于玉米籽粒胚结构光谱信息的水分含量预测最高效模型。提取胚结构区域所用光谱波段为1 197,1 322和1 495nm,建立SPA-PLS回归模型所用特征波段为1 322,1 342,1 367,1 949,2 070和2 496nm。研究结果表明,采用近红外高光谱技术进行玉米籽粒水分含量无损检测时,提取玉米籽粒胚结构的图谱信息较全表面光谱信息更高效。