论文部分内容阅读
建立基于LIBSVM的PM2.5浓度预测模型,对合肥市5个监测点的PM2.5小时平均浓度值进行预测,分析了不同污染物浓度和不同天气状况下的预测误差。结果表明:LIBSVM模型对5个监测点的PM2.5预测结果稳定,平均绝对误差为4.7631ug/m^3;在输入参数污染物浓度较低和不利于污染物扩散的条件下预测误差较小,在输入参数污染物浓度较大和有利于污染物扩散的条件下预测误差较大。LIBSVM模型能够很好地对PM2.5浓度进行预测,且输入参数对于模型的预测效果具有较大影响。