论文部分内容阅读
随着人工智能和医学大数据的发展,基于深度学习的医学图像分割技术因具有重要的应用价值和前景,已经成为目前的研究热点。为了增强特征图的语义信息,在U-net网络的基础上引入通道注意力机制,对U-net生成的特征逐通道进行压缩,将压缩后的特征逐通道计算权重,然后将该权重与原始特征相乘得出最终的特征。通过在两个不同器官的医学图像数据集上进行实验,Dice系数相较于原始U-net网络分别提高了2.7%和1.8%,验证了该方法的可行性和有效性。