论文部分内容阅读
针对传统电容层析成像(ECT)流型辨识方法识别率较低的问题,提出一种基于压缩感知理论的ECT流型辨识方法。首先,将ECT系统获得的测量电容向量归一化,并表示为训练样本集的过完备字典稀疏线性组合;然后,将随机高斯矩阵作为测量矩阵对测试样本和标准样本分别进行采样,并利用压缩感知信号重构算法求解LO范数下的最优化问题,从而得到各样本在训练样本集上的稀疏表示;根据待测样本和标准样本稀疏解之间的线性相关程度来确定归属流型。对典型流型的仿真实验结果显示,在无噪声、40dB、20dB信噪比的情况下,流型辨识准确率分别为