论文部分内容阅读
行人重识别是计算机视觉中一项具有挑战性和实际意义的重要任务,具有广泛的应用前景。背景干扰、任意变化的行人姿态和无法控制的摄像机角度等都会给行人重识别研究带来较大的阻碍。为提取更具有辨别力的行人特征,本文提出了基于多分区注意力的网络架构,该网络能同时从全局图像和不同局部图像中学习具有鲁棒性和辨别力的行人特征表示,能高效地提高行人重识别任务的识别能力。此外,在局部分支中设计了一种双重注意力网络,由空间注意力和通道注意力共同组成,优化提取局部特征。实验结果表明,该网络在Market-1501、DukeMT