论文部分内容阅读
根据离心泵故障振动信号的特点,提出了一种Hilbert-Hua雌变换(HHT)和径向基(RBF)神经网络相结合的离心泵振动信号故障诊断新方法。首先,将离心泵振动信号时间序列数据经验模态分解(Empirical Mode Decomposition,简称EMD),然后经过Hilben—Hua雌变换获得各模态(Intrinsic Mode Functions,简称IMF)的能量,并以“能量比”为元素,利用能量比构造离心泵振动信号的特征向量可以很好刻画不同振动故障信息;应用RBF神经网络建立了从特征向量到故障模