论文部分内容阅读
Oleoylchitosans (O-chitosans) with different degrees of substitution (DS) were synthesized by reacting chitosan with oleoyl chloride. The chemical structures of the products were characterized by 1H NMR and FT-IR. These results suggested the for- mation of an amide linkage between the amino groups of chitosan and the carboxyl groups of oleic acid. The viscosity of O-chitosan sharply increased with the increase of concentration, whereas that of unmodified chitosan rose only slightly. This increase became larger as the DS increased. All of the O-chitosans could reduce surface tension slightly. The critical aggregation concentration (CAC) of O-chitosans with DS 5%, 11%, and 27% were 79.43 mgL-1, 31.6 mgL-1, and 10 mgL-1, respectively. Nanoparticles were prepared using an O/W emulsification method. The mean diameters of the polymeric amphiphilic nanoparticles of O-chitosans with DS 5% and 11% were around 327.4 nm and 275.3 nm, respectively.
Oleoylchitosans (O-chitosans) with different degrees of substitution (DS) were synthesized by reacting chitosan with oleoyl chloride. The chemical structures of the products were characterized by 1 H NMR and FT-IR. These results suggest the for mation of an amide linkage between the amino groups of chitosan and the carboxyl groups of oleic acid. The viscosity of O-chitosan sharply increased with the increase of concentration, yet that of unmodified chitosan rose only slightly. This increase became larger as the DS increased. All of the O The critical aggregation concentration (CAC) of O-chitosans with DS 5%, 11%, and 27% were 79.43 mgL-1, 31.6 mgL-1, and 10 mgL-1, respectively. Nanoparticles were prepared using an O / W emulsification method. The mean diameters of the polymeric amphiphilic nanoparticles of O-chitosans with DS 5% and 11% were around 327.4 nm and 275.3 nm, respectively.