论文部分内容阅读
针对可见光与红外图像融合时出现的特征信息提取不足等问题,提出了一种基于非下采样剪切波变换(NSST)与深度玻尔兹曼机(DBM)的可见光与红外图像融合方法。首先,利用DBM实现红外图像的最优能量分割以提取其中的显著红外目标;其次,将分割得到的显著目标区域与背景区域分别投影至源图像,获得相关映射图;最后,使用NSST分别对可见光图像与红外投影图像进行多尺度、多方向稀疏分解,对源图像的一系列子图像进行融合,并采取NSST反变换重构获得最终融合图像。仿真实验结果表明:与现有的3种经典方法相比,本文方法在信息