论文部分内容阅读
纹理作为一种视觉特征,它广泛应用于图像分析。概率图模型由于其自身特点可以很好地描述纹理。高斯图模型结构可根据局部马尔科夫性和高斯变量的条件回归之间的关系来学习。高斯图模型可用一个邻域系统、一个参数集和一个噪声序列表示。利用惩罚正则化方法,可以选择高斯图模型的邻域并估计参数,然后提取纹理特征进行纹理合成和分类。实验结果显示基于高斯图模型的纹理特征更加有效。