论文部分内容阅读
针对传统人体跟踪方法存在的不足,提出一种深度Histograms of Oriented Gradients(HOG)和Locally Linear Embedding(LLE)相结合的跟踪方法。首先依据图像的颜色和深度信息,结合改进的HOG表达式提取人体的特征向量;再利用流行学习LLE算法对特征向量进行降维,采用欧氏距离判别法找出每帧图像人体所在区域,并对人体区域加以标记;最后,进行人体的实时跟踪。实验结果表明:降维后的人体特征数据更有助于实现跟踪,所提出的方法应用到视频图像人体跟踪中可以有效地跟