论文部分内容阅读
指数时间差分方法是近年来提出求解刚性常微分方程的一种新的数值计算方法.指数时间差分方法是一种积分方法,而不是经典的差分方法.利用指数时间差分方法求解扩散方程,如一维拟线性对流扩散方程和Allen-Cahn扩散方程.扩散方程在空间方向离散后转化成刚性常微分方程.用显式指数时间差分方法和相应阶的显式Runge-Kutta方法求解刚性常微分方程.数值结果表明显式指数时间差分方法具有相同阶的显式Runge-Kutta方法相应的精度,稳定性显著提高,而且能很好地模拟扩散方程的演化行为.指数时间差分方法可用于刚